Publications
Mapping human brain activity in vivo.
Mazziotta JC; The Western journal of medicine. 1994-Sep; 161(273-8):3
A wide range of structural and functional techniques now exists to map the human brain in health and disease. These approaches span the gamut from external tomographic imaging devices (positron-emission tomography, single photon-emission computed tomography, magnetic resonance imaging, computed tomography), to surface detectors (electroencephalography, magnetoencephalography, transcranial magnetic stimulation), to measurements made directly on the brain's surface or beneath it (intrinsic signal imaging, electrocorticography). The noninvasive methods have been combined to provide unique and previously unavailable insights into the macroscopic organization of the functional neuroanatomy of human vision, sensation, hearing, movement, language, learning, and memory. All methods have been applied to patients with neurologic, neurosurgical, and psychiatric disease and have provided a rapidly expanding knowledge of the pathophysiology of diseases such as epilepsy, cerebrovascular disease, neoplasms, neurodegenerative diseases, mental illness, and addiction states. In addition, these new methods have become a mainstay of preoperative surgical planning and the monitoring of pharmacologic or surgical (transplantation) interventions. Most recently, the ability to observe the reorganization of the human nervous system after acute injury, such as occurs with cerebral infarction or head trauma, or in the course of a progressive degenerative process such as Alzheimer's or Parkinson's disease, may provide new insights and methods in the rapidly expanding field of neurorehabilitation. Our newfound ability to generate maps and databases of human brain development, maturation, skill acquisition, aging, and disease states is both an exciting and formidable task.
PMID:
7975566 doi:
10.1038/371600a0
BMAP Author
John Mazziotta M.D., Ph.D.
310-825-2699