
 

 
 

ViewPoint EyeTracker ® 

UserGuide 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

® 
 

Arrington Research 
 

Karl Frederick Arrington, Ph.D.



 
Arrington Research 

 
 

 
 

March 2, 2016 15:31:00 
 
 

2016 © Arrington Research, Inc. 
All rights reserved. 

 
 
 
 
 
 

Contact Information 
 
 
 
Arrington Research, Inc. 

27237 N 71st Place, Scottsdale, AZ 85266 

United States of America 

 
Phone +1-480-985-5810  
 
www.ArringtonResearch.com 
 
 
 
ViewPoint-EyeTracker@ArringtonResearch.com 

 
 

ViewPoint EyeTracker ® is a Registered Trademark of Arrington Research, Inc. 
ViewPoint ~ Voltage ™ is a Trademark of Arrington Research, Inc. 
RemoteLink™ is a Trademark of Arrington Research, Inc. 
ViewPoint Client ™ is a Trademark of Arrington Research, Inc. 
3D ViewPoint ™ and 3DVP™ are Trademarks of Arrington Research, Inc. 
3D WorkSpace ™ and 3DWS™ are Trademarks of Arrington Research, Inc. 
Experiment Engine ™ is a Trademark of Arrington Research, Inc. 

 
 
 

ViewPoint version:  2.9.5.111 
C:\ARI\ARI Graphic Arts\ARI Documentation\VP Manual\ViewPoint-UserGuide-099.docx 

  

http://www.arringtonresearch.com/
mailto:EyeTracker@ArringtonResearch.com


 
Arrington Research 

 
 

CHAPTER 1. INTRODUCTION 1 

1.1 Congratulations 1 
1.2 Contact Us 1 

 Custom Software & Hardware Development 1 1.2.1
 User Feedback & Support 1 1.2.2

1.3 License Information and Conditions of Use 1 
1.4 Styles 2 
1.5 High-Risk Activities Warning 3 
1.6 Computer System Requirements 3 
1.7 How to Use this UserGuide 3 
1.8 Hardware Installation 4 
1.9 Documentation Folder 4 
1.11 Info Window 5 
1.12 Citing Viewpoint 6 

 Citing Viewpoint in Methods Section 6 1.12.1
 Citing Viewpoint in References Section 6 1.12.2

CHAPTER 2. OVERVIEW OF VIEWPOINT 7 

2.1 Complete Environment 7 
2.2 Interfaces 7 

 Graphical User Interface (GUI) 7 2.2.1
 Command Line Interface (CLI) 7 2.2.2
 Using CLI Commands 8 2.2.3

2.2.3.1 Settings Files 8 
2.2.3.2 Interactive CLI Window 8 
2.2.3.3 FKey and TTL 8 
2.2.3.4 SDK/API 8 
 Software Developer’s Kit (SDK) 8 2.2.4
 Ethernet & ViewPointClient TM 8 2.2.5

2.2.5.1 ViewPointClientTM for PC 8 
2.2.5.2 ViewPointClientTM for Mac 9 

2.3 Interfaces to Third Party Products 9 
 Integrity Suite TM 9 2.3.1
 Other Third Party Interfaces 9 2.3.2

2.4 Use the SDK to write your own Layered Applications. 10 
 SDK Communication 10 2.4.1
 Example Layered Interface Applications 10 2.4.2

2.5 Pilot Data 10 

CHAPTER 3. DIFFERENT CALIBRATION METHODS 11 



 
Arrington Research 

 
 

CHAPTER 4. SOFTWARE INSTALLATION 12 

4.1 ViewPointLicense (.VPL) File 12 
4.2 Program Layout 12 

 User Windows 13 4.2.1
 Menu Navigation 15 4.2.2

4.3 Criteria 16 

CHAPTER 5. QUICK START SECTION 17 

5.1 Eye Camera & LED Illuminator Positioning 17 
 Camera Positioning 17 5.1.1
 EyeFrame Camera Positioning 18 5.1.2
 Remote System Camera Positioning 18 5.1.3

5.2 Pan/Zoom/AutoCenter 18 
 Panning 18 5.2.1
 Zooming 19 5.2.2
 AutoCenter 19 5.2.3

5.3 Locating the Pupil – All Systems 20 
 Corrective Lenses (Eye Glasses) 20 5.3.1

5.4 Thresholding – All Systems 21 
5.5 Calibration 21 

 Calibration (Head Fixed and HMD Systems) 21 5.5.1
5.5.1.1 HMD Partial Binocular Overlap 22 
 Calibration (SceneCamera) 22 5.5.2

5.6 Stimuli 24 
 Choosing the Type of Stimulus 24 5.6.1
 ViewPoint Stimulus Window 24 5.6.2
 Interactive Computer Display 24 5.6.3
 SceneCamera Systems 24 5.6.4
 Show SceneVideo in Stimulus window 25 5.6.5

5.7 Data Collection – All Systems 25 
5.8 Recording Scene and Screen Movies 27 

 Recorded Movie Format 27 5.8.1
 Display of Overlay Graphics in Recorded Movie 28 5.8.2
 Compression 28 5.8.3

5.9 DataAnalysis program 28 
5.10 Analysis Options 28 

 Head Fixed and HMD Systems 28 5.10.1
 Playing Scene and Screen Movies 29 5.10.2

5.11 Frequently Used Settings 29 
5.12 Preferred Window Layout 29 
5.13 Accelerator Keys & FKeys 29 
5.14 Printing 29 



 
Arrington Research 

 
 

CHAPTER 6.  LOCATING THE PUPIL AND GLINT (ALL SYSTEMS) 30 

6.1 EyeCamera Window 31 
6.2 Feature Method 31 

 Single DataPoint 31 6.2.1
 Multiple DataPoint 31 6.2.2

6.2.2.1 Advantages 32 
6.2.2.2 Disadvantages 32 
 Slip Compensation 32 6.2.3

6.3 Simulation of Gaze 32 
 Manual Simulation 32 6.3.1
 Pattern Simulation 33 6.3.2

6.4 Thresholding 33 
6.5 Setting the Scan Density 33 
6.6 Manual Thresholding of the Dark Pupil 34 
6.7 Step-by-step guide for Glint-Pupil Vector method 35 
6.8 Noise 36 
6.9 Automatic Slip Compensation 36 
6.10 Feature Criteria 37 

 Pupil Aspect Criterion 37 6.10.1
 Width Criteria 37 6.10.2

6.11 Alternative Segmentation Methods 37 
 Ellipse 37 6.11.1
 Centroid 38 6.11.2
 Oval Fit 38 6.11.3
 PupilScanArea Shape Options 38 6.11.4
 Glint Segmentation Methods 38 6.11.5

CHAPTER 7. BINOCULAR OPTION 39 

7.1 To switch Operating in Binocular Mode 39 
7.2 CLI Prefix – EyeTarget Specifier 39 
7.3 Setup 40 
7.4 Storing Data 40 
7.5 Real-Time Display of Binocular Data 40 

CHAPTER 8. CALIBRATION 41 

8.1 Calibration Carryover 41 
8.2 Choosing the Number of Calibration Points 41 
8.3 Automatic Calibration (Head Fixed) 41 
8.4 Assessing Calibration Success 42 
8.5 CalibrationImage 43 



 
Arrington Research 

 
 

8.6 Binocular Calibration 44 
8.7 Omitting Individual Calibration Points 44 

 Automatic Omitting 44 8.7.1
 Manual Omitting 45 8.7.2

8.8 Re-presenting Individual Calibration DataPoints 45 
8.9 Slip Correction 45 
8.10 Gaze Nudge 45 
8.11 Dominant Eye 46 
8.12 Advanced Calibration Controls 46 

 Calibration Stimulus & Background Color 47 8.12.1
 Timing & Warning 47 8.12.2
 Presentation Order 47 8.12.3
 Stimulus-Point Locations 48 8.12.4

8.12.4.1 Custom Calibration Point Positions 49 
8.12.4.2 Partial Binocular Overlap 49 

 Flipping the Initial Calibration 49 8.12.5
 Adjusting the Calibration Area 50 8.12.6
 Snap and Increment Calibration Modes 50 8.12.7
 Manual Calibration 50 8.12.8
 Calibration Points in a Settings file 51 8.12.9

CHAPTER 9. CORRECTIONS BASED ON MEASUREMENTS 52 

9.1 Obtaining POG in Degrees: 2D Geometry 52 
 Stimulus Window or InterActive Display -- HeadFixed (non-HMD) 53 9.1.1
 HeadMounted SceneCamera 53 9.1.2
 HeadMounted Display 54 9.1.3
 Notes on Measurement Lines 55 9.1.4
 Geometry Grid 55 9.1.5

9.2 Parallax Correction for Binocular SceneCamera systems 56 
 Manual Parallax Adjustment 57 9.2.1
 Parallax Correction from Data 57 9.2.2

9.3 Pupil Diameter 58 
 Raw Pupil Size 58 9.3.1
 Calculated Pupil Diameter 59 9.3.2

9.4 Inter-Pupillary Distance (IPD) 60 
9.5 Pupil Aspect 60 

CHAPTER 10. CURSOR CONTROL - EYEMOUSE 61 

CHAPTER 11. OCULAR TORSION 62 

11.1 Introduction to Torsion 62 



 
Arrington Research 

 
 

11.2 Procedure for Measuring Torsion 64 
11.3 Torsion Demonstration Test 65 
11.4 Cyclovergence 65 
11.5 Overriding the Default Torsion Parameters 65 
11.6 Torsion Data 66 

CHAPTER 12. STIMULUS PRESENTATION ( HEAD FIXED ) 67 

12.1 General 67 
12.2 PictureList 68 
12.3 Using the Stimulus Window (Head Fixed Option) 69 
12.4 Stereo Display 69 
12.5 Using the GazeSpace Window 70 
12.6 Regions of Interest (ROI) 71 
12.7 ROI use Corrected Data 72 
12.8 Associating an Image with Specific ROI 73 
12.9 ROI Transition Statistics or Linkages 73 
12.10 Controlling Stimulus Presentation 75 

CHAPTER 13. DATA COLLECTION 76 

13.1 Sampling Rate 76 
13.2 Saving Data to File 76 

 Unprocessed & Corrected Data 76 13.2.1
13.3 Data File Format 77 

 File Header Information 77 13.3.1
 File Records 77 13.3.2
 Synchronous vs. Asynchronous Data Inserts 78 13.3.3
 Data Record Tags. 79 13.3.4
 User Defined Data 79 13.3.5

13.4 PupilWidth and PupilHeight calculations 83 
13.5 Direction-of-Gaze Coordinates 83 
13.6 Raw Data 83 
13.7 Timing Measurement 83 
13.8 Display Screen Geometry 84 
13.9 Events Data 84 
13.10 Regions of Interest (ROI) 85 
13.11 Quality Marker Codes 85 

CHAPTER 14. DATA DISPLAY & ANALYSIS 86 

14.1 Real-Time 86 
 PenPlots 86 14.1.1



 
Arrington Research 

 
 

 Data Smoothing 87 14.1.2
14.2 Fixation, Saccade, Drift and Blinks 88 

 Fixations 88 14.2.1
 Criteria Levels 89 14.2.1
 Saccade Velocity Criterion 89 14.2.2
 Drift Criterion 90 14.2.3
 Fixation Time Criterion 90 14.2.1
 Blinks 90 14.2.2
 Events Markers 90 14.2.3
 Events Window 90 14.2.4
 SDK 91 14.2.5

14.3 Post-Hoc 91 
14.4 Summary Data 91 

CHAPTER 15. STATE ENGINE 92 

15.1 State Engine Commands 92 
 State Initialization 92 15.1.1
 State Setup 92 15.1.2
 State Commands 92 15.1.3
 State Transition Commands 92 15.1.4
 State Space Debug 93 15.1.5

15.2 Picture Lists 93 
15.3 Counters 93 
15.4 Miscellaneous 94 

CHAPTER 16. USING SETTINGS FILES 97 

16.1 CLI String Parsing 97 
16.2 Saving and Loading Settings Files 97 

 Startup Folder 98 16.2.1
 FinishUp Folder 98 16.2.2
 Settings/LastRun.txt 98 16.2.3

16.3 Settings File Examples 98 
16.4 CLI commands 99 
16.5 Associating CLI s with FKeys 99 
16.6 Command Line Interface Window 99 
16.7 Settings File Lists (Deprecated) 99 

CHAPTER 17. ETHERNET COMMUNICATION BETWEEN COMPUTERS 101 

17.1 Ethernet Software Connections 102 
 Changing the ViewPoint IP Address 102 17.1.1



 
Arrington Research 

 
 

 Changing the Port Number 102 17.1.1
 Running the ViewPoint Server 103 17.1.2
 Ping Clients 103 17.1.3
 Loopback 103 17.1.4
 Static IP Addresses and Zero Configuration 103 17.1.5
 Firewalls 104 17.1.6

17.2 Ethernet Hardware Connections 104 
 Hub, Switch, Router, or a Crossover Cable? 104 17.2.1
 Direct Connection using Ethernet Cable. 104 17.2.2

17.3 Ethernet to Microsoft Windows computers 105 
 How to use ViewPointClient 105 17.3.1
 Windows Third Party Applications 106 17.3.2
 Layered Applications 106 17.3.3

17.4 Ethernet to Apple Macintosh computers. 107 
 Macintosh Third Party Applications 109 17.4.1
 Terminal Window (deprecated method?) 109 17.4.2

17.5 Ethernet Server Error 110 
17.6 ViewPoint ClientTest - CommandLineTool 111 

CHAPTER 18. COMMAND LINE INTERFACE (CLI) 112 

18.1 Example of a Command Line: 112 
18.2 Important CLI Changes from Previous Versions 113 
18.3 Arguments 113 
18.4 Asynchronous Operations 114 
18.5 Error Detection and Reporting 114 
18.6 Parameters and Arguments 114 
18.7 Using Commands 115 

 Interactive CLI Window 115 18.7.1
 Fkey and TTL 115 18.7.2
 Settings Files 115 18.7.3
 SDK/API 115 18.7.4

18.8 Boolean Toggle 115 
18.9 Quoting Strings 115 
18.10 White Spaces 116 
18.11 Case Insensitive CLI Strings 117 
18.12 Embedded Special Characters 117 
18.13 SDK Return Values 117 
18.14 VPX_SendCommand & Formatted Strings 117 
18.15 TargetPrefix / EyePrefix 118 

CHAPTER 19. CONTROLS: GUI AND CLI 119 

19.1 General 119 



 
Arrington Research 

 
 

19.2 Help finding CLI commands 119 
 Help 119 19.2.1

19.3 Data Files 120 
 Specify NewUnique Data File Extension 120 19.3.1
 Open a Data File and Specify a File Name 121 19.3.2
 Open a Data File and Specify a File Name 121 19.3.1
 Insert a String into the Data File 122 19.3.2
 Insert a Marker into the Data File 123 19.3.3
 Insert a User Defined Data Tag into the Data File 124 19.3.4
 Specifies Asynchronous or Synchronous String Data 124 19.3.5
 Specify Asynchronous or Synchronous Marker Data 125 19.3.6
 Specify Asynchronous or Synchronous Head Tracker Data 125 19.3.7
 Specify Data File Start Time 126 19.3.8
 Include Raw Eye Data in Data File 126 19.3.9

 Include Events Data File 126 19.3.10
 Specify Whether to Use DataFile Buffering (DEPRECATED) 127 19.3.11
 Pause Writing of Data to File 127 19.3.12
 Opening Data File in Paused State 128 19.3.13
 Close Data File 128 19.3.14
 Close Data File and Open in Post-Hoc Analysis tool 128 19.3.15

 DataAnalysis Application 129 19.3.1
19.4 Corrected Data 129 

 Geometry Window 129 19.4.1
 Geometry Measurement 129 19.4.2
 Geometry Grid Spacing 130 19.4.1
 GeometryGrid Lines Display 130 19.4.2
 Specify Amount of Parallax Correction 130 19.4.1
 Inter-Pupillary Distance (IPD) Measure 131 19.4.1
 Pupil Diameter Calibration 131 19.4.1

19.5 Stimulus Images 132 
 Load Stimulus Image into the Stimulus window 132 19.5.1
 Specifies How to Display the Currently Loaded Stimulus Image 132 19.5.2
 Specify a Background “Matting” Color for the Stimulus Window 133 19.5.3
 Stereoscopic Display (Side-by-Side) 133 19.5.4
 Play specified Sound File 134 19.5.5

19.6 PictureList 135 
 Initialize Picture List 135 19.6.1
 Add New Image Name to Picture List 135 19.6.2
 Randomize List of Images in the Picture List 135 19.6.3
 Move to Next Image in the PictureList 135 19.6.4
 Move to Start of Images in Picture List 136 19.6.5
 Picture List End Action 136 19.6.6

19.7 Controls Window: EyeImage 136 
 Specify Mapping Feature 137 19.7.1
 AutoThreshold 137 19.7.2



 
Arrington Research 

 
 

 Positive Lock Tracking 137 19.7.3
 Adjust Pupil Threshold Slider 138 19.7.4
 Adjust Glint Threshold Slider 139 19.7.5
 Adjust Video Image Brightness 139 19.7.6
 Adjust Video Image Contrast 140 19.7.7
 Dynamically Optimize Brightness and Contrast Settings 140 19.7.8
 Adjust Pupil Scan Density 141 19.7.9

 Override Pupil Scan Density Minimum 141 19.7.10
 Adjust Glint Scan Density 142 19.7.11
 Override Glint Scan Density Minimum 143 19.7.12

19.8 EyeCamera Window 143 
 Adjust Pupil Scan Area 143 19.8.1
 Pupil AutoCenter 144 19.8.2
 Specify Pupil Scan Area Shape 144 19.8.3
 Pupil and Glint Oval Fit Constraints 145 19.8.4
 Define Glint Scan Area 145 19.8.5
 Define Offset of Glint Scan Area Relative to the Pupil 146 19.8.6
 Unyoke Glint Scan Area from the Pupil 146 19.8.7
 Define Offset of Unyoked Glint Scan Area 147 19.8.8
 Toggle Show Threshold Dots On / Off 147 19.8.9

 EyeImage Overlay Graphics to Layered App 148 19.8.10
 EyeCamera Tool Bar Display 148 19.8.11

19.9 Slip Compensation 149 
 Slip Compensation Speed 149 19.9.1
 Slip Compensation X-Gain 149 19.9.2
 Slip Compensation Y-Gain 150 19.9.3

19.10 EyeMovie related controls 151 
 Open / Close new EyeMovie file. 151 19.10.1
 EyeMovie Play 151 19.10.2
 EyeMovie Load … 152 19.10.3
 EyeMovie EndAction 152 19.10.4
 EyeMovie Percent Location 152 19.10.5
 EyeMovie Play Speed 153 19.10.6
 EyeMovie Binocular 153 19.10.7
 EyeMovie Binocular 153 19.10.8
 EyeMovie Zoom / Pan 154 19.10.9

19.11 Video related controls 155 
 Specify EyeCamera Video Input Standard 155 19.11.1
 Specify SceneCamera Video Input Standard 155 19.11.2
 Specify Video Operation Mode 156 19.11.3
 Specify Dark or Bright Pupil Tracking 156 19.11.4
 Specify Pupil Segmentation Method 157 19.11.5
 Specify Glint Segmentation Method 157 19.11.6
 Toggle Freeze Video Image Preview On / Off 158 19.11.7
 Reset Video Capture Device 158 19.11.8



 
Arrington Research 

 
 

 VideoMirror 159 19.11.9
19.12 Calibration Controls 160 

 Start Auto-Calibration 160 19.12.1
 Specify Calibration Stimulus Presentation Speed 160 19.12.2
 Specify the Duration of Calibration Warning Notice 161 19.12.3
 Specifies Interval Between Presentation of Calibration Points 161 19.12.4
 Specify Number of Calibration StimulusPoints 162 19.12.5
 Specify Calibration StimulusPoint Color 162 19.12.6
 Specify Calibration Stimulus Window Background Color 162 19.12.7
 Specify CalibrationStimulus Type 163 19.12.8
 Calibration Snap Mode 163 19.12.9
 Calibration Beep when Finished 164 19.12.1
 RePresent in Snap Calibration Mode 164 19.12.2
 AutoIncrement Calibration Mode 165 19.12.3
 Calibration StimulusPoint Presentation Order 166 19.12.4
 Specify Calibration StimulusPoint Presentation Order 166 19.12.5
 Specify Individual Custom Calibration StimulusPoints 167 19.12.6
 Display Custom Calibration StimulusPoint Order 167 19.12.7
 Select the Specified Calibration DataPoint 167 19.12.8
 Specify an Index Number for Calibration DataPoint 168 19.12.9

Randomize Calibration StimulusPoints Check Box (DEPRECATED) 168 
 Calibration StimulusPoint Location Method 169 19.12.10

OBSOLETE  Set Custom Calibration StimulusPoint Based on Scene Video Content 170 
OBSOLETE  Calibration StimulusPoint Location On/Off 170 
OBSOLETE  Set Custom Calibration StimulusPoint from Scene Video 171 

 Specify Custom Calibration StimulusPoint Locations 172 19.12.11
 Dump Custom Calibration StimulusPoints Locations 173 19.12.12
 Display Nearest-Neighbor Gridlines in EyeSpace Window 173 19.12.13
 Compensate for Slip 173 19.12.14
 Adjust Calibration Area 174 19.12.15
 Undo the Last Operation on a Calibration DataPoint 174 19.12.16
 Re-Present the Specified Calibration DataPoint 174 19.12.17
 Save Image of Eye at Each Calibration DataPoint 175 19.12.18
 Calibration Quality 175 19.12.19
 Nudge 176 19.12.20
 Manual Calibration 176 19.12.21
 Initialial Calibration Flip (Mirroring) 177 19.12.22

19.13 Controls: Criteria Controls 178 
 Specify amount of Smoothing 178 19.13.1
 Specify Smoothing Algorithm to Apply 178 19.13.2
 Specify Velocity Threshold 179 19.13.3
 Specify amount of Drift Allowed 179 19.13.4
 Specify Fixation Time Criterion 180 19.13.5
 Specify Pupil Aspect Ratio Failure Criterion 180 19.13.6
 Specify Pupil Max. Width Failure Criterion 180 19.13.7



 
Arrington Research 

 
 

 Specify Pupil Min. Width Failure Criterion 181 19.13.8
19.14 Region of Interest (ROI) 182 

 Define an ROI Box 182 19.14.1
 Set ROI Name 182 19.14.1
 Draw IsoEccentric 182 19.14.2
 Remove all ROI Boxes 183 19.14.1
 Select a Specific ROI 183 19.14.2
 Select the Next ROI Box 183 19.14.3
 Lock ROI Settings 184 19.14.1
 Associate ROI with a Particular Stimulus Image 184 19.14.2
 Set ROI Shape 184 19.14.3

19.15 PenPlot Controls 185 
 ViewPoint PenPlot names and their meanings 185 19.15.1
 3DViewPoint & 3DWorkSpace PenPlots 185 19.15.2
 PenPlot Dump Names 186 19.15.1
 Specify Which PenPlot Traces to Display 186 19.15.2
 PenPlot Background Color 187 19.15.3
 PenPlot Limen Fill Color 187 19.15.4
 Specify Speed of PenPlot Scrolling 187 19.15.5
 Specify Size of PenPlot Lines 188 19.15.6
 Specify Range of PenPlot Values 188 19.15.7
 Restart the PenPlot 188 19.15.1
 Specify the Behavior of the PenPlot after resuming from a VideoFreeze 189 19.15.2

19.16 Graphics Controls 189 
 Specify the Eye Color for GUI graphics 189 19.16.1
 Specify which Overlay Graphics to Display in the GazeSpace Window 190 19.16.2
 Specify which Overlay Graphics to Display in the Stimulus Window 190 19.16.3
 Erase Data Displays in the GazeSpace and Stimulus Windows 190 19.16.4
 Automatically Erase Display Windows 191 19.16.5
 Specify Time Delay for Auto Erase 191 19.16.6

19.17 Stimulus Window Controls 192 
 Specify Stimulus Source 192 19.17.1
 Specify Custom Stimulus Window Size and Position 193 19.17.2
 Automatically Show the Stimulus Window upon Calibrate 194 19.17.3
 Show SceneVideo in Stimulus window 194 19.17.1
 Specify How and Where to Show Stimulus Window 195 19.17.2

19.18 Window Related Controls 196 
 Size Window 196 19.18.1
 Move Window, or Move & Resize Window 196 19.18.2
 Specify ViewPoint Window State, or Windows Layout 197 19.18.3
 History Window Options 198 19.18.4
 History User Text 198 19.18.5
 Clear History Window 198 19.18.6
 Clear Events Window 199 19.18.7
 GazeSpace MouseAction 199 19.18.8



 
Arrington Research 

 
 

19.19 Settings File Commands 199 
 Load Settings File 199 19.19.1
 Edit Settings File 200 19.19.2
 Verbose CLI Parsing and loading of Settings Files 200 19.19.3
 Save Settings e.g. Calibrations etc. 200 19.19.4
 Save Window Layout Settings 201 19.19.1

19.20 SettingsFileList  (DEPRECATED use the StateEngine ) 201 
 Initialize Settings File List 201 19.20.1
 Next Settings File in List 202 19.20.2
 Add Settings File to the List 202 19.20.3
 Restart Settings File List 202 19.20.4
 Toggle Autosequencer ON / OFF 202 19.20.5
 Specify Delay between Settings Files in List 203 19.20.6
 Randomize Settings Files 203 19.20.7

19.21 Torsion Commands 203 
 Start / Stop Torsion Calculations 203 19.21.1
 Adjust Radius of Torsion SamplingArc 204 19.21.1
 Adjust Start Point of Torsion SamplingArc 204 19.21.2
 Adjust Length of Torsion SamplingArc 204 19.21.3
 Autoset Torsion Template after Adjustments 205 19.21.4
 Display Real-Time Torsion Data 205 19.21.5
 Adjust Torsion Measurement Range 205 19.21.6
 Adjust Torsion Measurement Resolution 206 19.21.7
 Set Autocorrelation Template 206 19.21.8

19.22 Interface Settings Commands 206 
 GazeCursor On / Off 206 19.22.1
 GazeCursor Transparency 207 19.22.2
 Turn Cursor Control On / Off 207 19.22.3
 Use Fixation to Issue Button Click 207 19.22.4
 Specify Fixation Time to Issue Button Click 207 19.22.5
 Use Blinks to Issue Button Click 208 19.22.6

19.23 Ethernet 209 
 Ethernet Server 209 19.23.1
 Ethernet Port Number 209 19.23.2
 Ethernet IP Address 209 19.23.3
 Ethernet List IP Addresses 210 19.23.1
 Ethernet Ping Clients 210 19.23.1

19.24 Binocular Commands 210 
 Turn Binocular Mode On / Off 210 19.24.1
 Specifies Binocular Averaging 211 19.24.2
 Specifies which Eye to Calibrate 211 19.24.3

19.25 System Files & Applications Related 212 
 Launch Application with Command Line Options 212 19.25.1
 SystemOpen 213 19.25.2
 Quit ViewPoint 213 19.25.3



 
Arrington Research 

 
 

 Confirm Quit 213 19.25.4
 Specify Default Folder Paths 214 19.25.5

19.26 FKey 215 
 Associate CLI’s with FKeys 215 19.26.1

19.27 TTL 216 
 Associate CLI’s with TTL Voltage Changes 216 19.27.1
 Set TTL Output Voltages 216 19.27.2
 Simulate Change in TTL Input 217 19.27.3
 Print TTL Values in the History Window 217 19.27.4
 Set TTL Output to Indicate Data Quality Codes 218 19.27.5

19.28 Misc. 219 
 Specify Verbose Information to Send to History Window 219 19.28.1
 Status Dump 219 19.28.2
 Update Eye Data on Request 220 19.28.3
 Set Status Window Update Rate for FPS Field 220 19.28.4
 SDK Debug Mode 220 19.28.5
 Priority 221 19.28.6
 Specify ViewPoint Generated Events 221 19.28.7

19.29 Parser Instructions 221 
 Comment 221 19.29.1
 End of Settings File Command 222 19.29.2

CHAPTER 20. SOFTWARE DEVELOPERS KIT (SDK) & API 223 

20.1 General 223 
20.2 RealTime Callback Functions 223 
20.3 Registering to Receive WindowMessages (Depreciated) 224 

 Example SDK Code (Deprecated method) 225 20.3.1
20.4 Data Quality Codes 225 
20.5 Sending CLI’s via the SDK 225 
20.6 High Precision Timing 226 
20.7 DLL Version Checking 226 
20.8 SDK Trouble Shooting 227 

 Different DLLs 227 20.8.1
 Different DLL Versions 227 20.8.2

20.9 SDK Data Access Functions 227 

CHAPTER 21. SDK FUNCTIONS 228 

21.1 GazeData 228 
 GetGazePoint 228 21.1.1
 GetGazeBinocular 229 21.1.2
 GetGazeAngle 230 21.1.3
 GetTotalVelocity 231 21.1.4



 
Arrington Research 

 
 

 GetComponentVelocity 231 21.1.5
 GetVelocityBinocular 232 21.1.6

21.2 3D-Data 233 
 GetHeadPositionAngle 233 21.2.1
 GetPanelHit 234 21.2.2
 GetVergenceAngle 234 21.2.3
 GetGazePoint3D 235 21.2.4
 GetVersionAngle 235 21.2.1
 GetVersionComponentVelocity 236 21.2.2
 GetVersionTotalVelocity 236 21.2.3

21.3 Eye Events 237 
 GetFixationSeconds 237 21.3.1
 GetDrift 237 21.3.2
 GetBlinkEvent 238 21.3.3
 GetEyeMovementEvent 238 21.3.4

21.4 ROI 239 
 GetROI_RealRect 239 21.4.1
 ROI _GetHitListLength 239 21.4.2
 ROI_GetHitListItem 240 21.4.3
 ROI_MakeHitListString 241 21.4.4

21.5 EyeSpace 242 
 GetPupilSize 242 21.5.1
 GetPupilAspect 243 21.5.2
 GetPupilOvalRect 243 21.5.3
 GetPupilAngle 244 21.5.4
 GetPupilDiameter 244 21.5.5
 GetPupilPoint 245 21.5.6
 GetPupilCentroid 245 21.5.1
 GetDiffVector 246 21.5.2
 GetGlintPoint 246 21.5.1
 GetGlintCentroid 247 21.5.2
 GetTorsion 247 21.5.3
 Data Quality 248 21.5.4

21.6 Time Stamps 249 
 GetDataTime 249 21.6.1
 GetDataDeltaTime 249 21.6.2
 GetStoreTime 250 21.6.3
 GetStoreDeltaTime 250 21.6.4
 Precision Timing 251 21.6.5

21.7 Miscelaneous 252 
 GetCursorPosition 252 21.7.1
 GetStatus 253 21.7.2
 GetViewPointHomeFolder 253 21.7.3
 GetMeasuredViewingDistance 254 21.7.4
 GetMeasuredScreenSize 254 21.7.5



 
Arrington Research 

 
 

21.8 Calibration Information 255 
 VPX_CalibrationEventRecord 255 21.8.1
 GetCalibrationEventRecord 255 21.8.2
 GetCalibrationStimulusPoint 256 21.8.3

21.9 HWND Functions 257 
 Set Remote EyeImage 257 21.9.1
 Set EyeImage Display Rectangle 257 21.9.2
 Set External Stimulus Window 258 21.9.3
 GazeSpace / Stimulus Window 259 21.9.1

21.10 CallbackFunction Interface 260 
 Insert Callback function 260 21.10.1
 Remove Callback function 261 21.10.2
 List Callback functions 261 21.10.3
 Get Layered App CallbackListLength 261 21.10.4
 VPX_CallbackResult 262 21.10.5

21.11 MessageRequest Interface (Deprecated) 263 
 Insert MessageRequest 263 21.11.1
 Remove MessageRequest 263 21.11.2
 Remove non-responding MessageRequests 264 21.11.3
 Get Message List Length 264 21.11.4
 Get Message Post Count 264 21.11.5
 GetViewPointAppCount 265 21.11.6

21.12 Version Checking and Matching for SDK / DLL 265 
 VPX_GetDLLVersion 266 21.12.1
 VPX_VersionMismatch 266 21.12.2
 VPX_GetRevisionNumber 266 21.12.3

21.13 SDK Utility Functions 267 
 DebugSDK 267 21.13.1
 Draw Rectangle 267 21.13.2
 Draw Ellipse 267 21.13.3
 Draw ROI 267 21.13.1
 Convert: pixelRect  normalizedRect 268 21.13.2
 Convert: normalizedRect pixelRect 268 21.13.3
 Convert: LParam  RealPoint 268 21.13.4
 Convert: LParam  RectPoint 269 21.13.5

21.14 Events and Notification Messages 270 
 General Events 270 21.14.1
 Calibration Events 273 21.14.2

21.15 Structures and Enumerations 278 
 VPX_PositionAngle 278 21.15.1
 VPX_GetImageRecord 278 21.15.2
 VPX_QUALITY_ 278 21.15.3
 VPX_GLINT_QUALITY 278 21.15.4
 VPX_STATUS_ 279 21.15.5
 VPX_BinocularAveragingType 279 21.15.6



 
Arrington Research 

 
 

 VPX_DistributorType 279 21.15.7
 VP_Message_NotificationCodes 280 21.15.8
 VPX_ParseType 281 21.15.9

 VPX_CallbackResult 281 21.15.10
 VPX_EyeDataRecord 282 21.15.11

21.16 CalibrationEventRecord (moved to 21.8.1) 283 
21.17 Legacy, Obsolete, & Deprecated 284 

CHAPTER 22. TROUBLESHOOTING 285 

22.1 History Window 285 
22.2 Improving Frame Rate 285 
22.3 EyeCameraWindow Troubleshooting 285 

 Bottom Half of EyeCamera Window is Black (Analog 60 Hz products) 285 22.3.1
22.4 General Troubleshooting 286 

CHAPTER 23. ERROR CODES 287 

23.1 Introduction to Error Codes 287 

CHAPTER 24. HISTORY OF EYE TRACKING METHODS 290 

24.1 Electrical Methods 290 
 Surface Recordings 290 24.1.1
 Induction Coils 290 24.1.2

24.2 Optical Methods 290 
 Reflections or Purkinje Images 290 24.2.1

24.2.1.1 Corneal Reflection Tracking 290 
24.2.1.2 Other Reflections 291 

 Dark Pupil Tracking 291 24.2.2
 Limbus Tracker 291 24.2.3
 Bright Pupil Method 291 24.2.4
 Corneal Bulge Method 291 24.2.5
 Vector Difference Method 291 24.2.6

CHAPTER 25. HARDWARE INSTALLATION 293 

25.1 USB-220 & USB-400 Installation 293 
25.2 60 Hz Video Capture 295 

 Camera Systems 295 25.2.1
 Using with Third Party Video Cameras & Signals 295 25.2.2

25.3 USB-60x3 (SilverBox) Installation and Set Up 296 



 
Arrington Research 

 
 

25.4 PC-60 (PCI card) Installation and Set Up 297 
25.5 GigE-60 Installation and Set Up (Discontinued) 300 

 Trouble Shooting 300 25.5.1
 Static IP address setup. 301 25.5.2
 GigE-60 Installation and Setup 304 25.5.3

25.5.3.1 Ethernet NIC 304 
25.5.3.2 Ethernet TCP/IP 304 
25.5.3.3 Direct Connection 304 
25.5.3.4 DHCP Network Connection 304 
25.5.3.5 Ethernet Cable 304 

CHAPTER 26. LATENCY 305 

CHAPTER 27. SAFETY 306 

27.1 Infrared Light 306 

CHAPTER 28. ARI SOFTWARE LICENSE 307 

CHAPTER 29. THIRD PARTY LICENSES 309 

CHAPTER 30. APPENDIX 310 

30.1 Diagram of the Eye 310 
30.2 Mapping to GazeSpace 311 
30.3 Schematic Bloc Description of ViewPoint 311 

CHAPTER 31. WHAT’S NEW & WHAT’S CHANGED 313 

31.1 What’s New 313 
31.2 What’s Changed 313 

 VPX_GazePointCalculated  VPX_GazePointCorrected 313 31.2.1
 RemoteLink & SerialPort Controls (MODIFIED for Ethernet or OBSOLETE) 313 31.2.2
 Manual & Pattern simulation options moved 313 31.2.3
 Command Line Interface 314 31.2.4
 GazeNudge and GazeNudgeInc replace zeroingSignal_* 314 31.2.5
 Underscore characters removed from CLI before lookup 314 31.2.6
 DLL mismatch is no longer repored for minor patches. 314 31.2.7
 Added for version 2.9.3.121 315 31.2.8
 Added for version 2.9.3.123 315 31.2.9

 Added Documentation for EyeMovie controls 2.9.3.123 315 31.2.10
 Version 2.9.3.124 315 31.2.11



 
Arrington Research 

 
 

 Version 2.9.3.126 315 31.2.1
 Version 2.9.3.133 315 31.2.2

31.3 What’s Removed 316 

CHAPTER 32. ISSUES 317 

32.1 Document Guidelines 317 
32.2 Known Issues with this document 317 
32.3 Coding issues 320 



 
Arrington Research 

3/2/2016 
Page 1 

Chapter 1.  Introduction  

1.1 Congratulations  

Congratulations on your purchase of the ViewPoint EyeTracker ®. It has been designed to be the easiest to 
use, most reliable, and best value eye tracker on the market. Almost 20 years of development and 
improvement have made the ViewPoint EyeTracker ® the most powerful eye tracking environment 
available. 
 

 Intuitive User Interface 
 Powerful SDK allows easy integration with other application programs  
 Powerful Command Line Interface allows extensive customization & easy configuration 
 Free interfaces to popular 3rd party programs, e.g., MATLAB, Presentation, E-Prime, etc. 
 Built-in State Machine for experimental control 
 Pupillometry 
 AnalogOut and TTL options 
 Torsion option 

 
It provides:  

 
 A comprehensive solution for eye tracking research.  
 An embeddable eye tracking solution for third party products and end user custom applications. 

1.2 Contact Us 

Feel free to contact us for support, ideas, custom projects, business opportunities, etc. 
Please email inquiries to:  ViewPoint-EyeTracker@ArringtonResearch.com 

 Custom Software & Hardware Development  1.2.1

Special software and hardware development for laboratories or organizations may be performed under 
individual consulting agreements. ViewPoint EyeTracker ® is easily customized as an embedded eye 
tracking solution for OEMs. We also help OEMs to interface the ViewPoint EyeTracker ® with their 
equipment by providing custom camera and optical solutions.  

 User Feedback & Support 1.2.2

Suggestions for improvements to this ViewPoint UserGuide or to the ViewPoint EyeTracker ® software are 
always welcome and appreciated. Please report any problems as soon as possible, a work-around may be 
easy for you, but may not be so clear for another user. 

1.3 License Information and Conditions of Use  

Use of the software constitutes consent to the terms of the “ARI Software License” in described in 
Chapter 28. The contents of this UserGuide and any other documentation provided with the ViewPoint 
EyeTracker ® are for the use of registered ViewPoint EyeTracker ® users only. No part of this or other 
ViewPoint EyeTracker ® documentation or Software Developer Kit (SDK) information may be distributed or 
shared with others, without prior written permission from Arrington Research, Inc. 



 
Arrington Research 

3/2/2016 
Page 2 

1.4 Styles 

The meaning of different type fonts is specified in Table 1, and the meaning of different shading and 
icons are specified in Table 2. 

 

  Meaning of Type Fonts  Table 1.

Type Font Example Meaning 

Eye tracking has many applications.  Body  

dataFile_NewUnique  CLI command (Calibri, 10, Bold, OrangeRed) 

VPX_GetGazePoint2(EYE_B,&gazePoint); Code (Courier, 9, MidnightBlue) 

File > Data > New Data File  GUI controls: Menu, etc. (Calibri, 10, Italic, Blue) 

Controls window  Window name (Italic) 

Table 19 Link within document or Hyperlink (Underline) 

RemoteLink™ Deprecated or obsolete (gray color) 

 
 

         Meaning of Shading and Icons  Table 2.

Example Meaning 

 

Read the UserGuide.  

Hint box  

 

 

 

Do not start your experiment without first 
collecting and understanding test data!  

 

Warning Box 

 

The default setting is 0.1 Note box  

 



 
Arrington Research 

3/2/2016 
Page 3 

1.5 High-Risk Activities Warning  

Every effort has been made to provide a bug-free product. Nevertheless, this software is not intended 
for use in the operation of nuclear facilities, aircraft navigation, communications systems, air traffic 
control, medical treatment and diagnosis, or for any other use where the failure of the software could lead 
to death, personal injury, or damage to property or the environment.  

1.6 Computer System Requirements  

The ViewPoint EyeTracker ® runs on the Windows-7, Windows-8, and Windows-10  operating 
systems.  Please make sure that the latest service packs are loaded.  

1.7 How to Use this UserGuide  

New users should study Chapters 2, 3, and 4 to get started:  

Chapter 2:  Overview of ViewPoint describes the principle-of-operation of the ViewPoint 
EyeTracker® and provides an overview of its design. 

Chapter 5: Quick Start Section provides a brief tutorial designed to help new users start recording 
eye movements very quickly and easily. 

Chapter 18 is the most comprehensive reference section for all aspects of the eye tracker and should 
be referred to often. It contains every feature and control available, including those with no 
corresponding GUI. The remaining chapters each deal with a different task or set of tasks that the 
user may want to perform, and they provide some helpful background on eye tracking.  

  



 
Arrington Research 

3/2/2016 
Page 4 

1.8 Hardware Installation  

The ViewPoint EyeTracker ® uses a variety of different video capture hardware. Hardware and driver 
installation is described in Chapter 25. In particular find the following sections: 

 

          Installation Sections for Specific Products Table 3.

Section Products 

25.1 Digital Camera Products: USB-90, USB-220, USB-400 

25.2 General information on 60 Hz Analog Camera products  

25.3 USB-60x3 = USB SilverBox  

25.4 PC-60 = PCI card (soon to be discontinued) 

25.5 GigE-60 (discontinued) 

 
 

1.9 Documentation Folder 

The Documentation Folder contains many files besides this ViewPoint EyeTracker ® UserGuide. The second 
most important file is the ChangeHistory that usually includes many new features that have not yet made it 
into this UserGuide, as well as detailing important changes. 

 

Use menu item: Help > Documentation ... to quickly access the Documentation folder. 

 
In addition, documentation for various layered products is included inside the specific product folder 

inside the ~/ ViewPoint/Interfaces/ folder. Refer below for examples:  
ViewPoint/Interfaces/Mac/MATLAB 

ViewPoint/Interfaces/Mac/ViewPoint-ClientTest 

 

ViewPoint/Interfaces/Windows/MATLAB 

ViewPoint/Interfaces/Windows/Python  

ViewPoint/Interfaces/Windows/E-Prime  

ViewPoint/Interfaces/Windows/LabView  

ViewPoint/Interfaces/Windows/Presentation  

ViewPoint/Interfaces/Windows/Voltage  

ViewPoint/Interfaces/Windows/ViewPointClient 

 

ViewPoint/Interfaces/3DWorkSpace 

 
 

  



 
Arrington Research 

3/2/2016 
Page 5 

1.11  Info Window  

The Info window can be displayed using menu item Help > Info. This provides system information, a list 
of keyboard shortcut keys, FKey assignments, display devices that ViewPoint has detected, the computer 
IP address, default folder paths, etc. 



 
Arrington Research 

3/2/2016 
Page 6 

1.12  Citing Viewpoint  

We ask that you give credit to the ViewPoint EyeTracker ® in both the Methods Section and the References 
Section of any published papers.  

 

Note that ViewPoint is one word with only the letters V and P capitalized, and that EyeTracker is 
also one word, with only the letters E and T capitalized. It is a registered trademark and should be 
followed by a capital R within a circle, ®, or if not available, a capital R within parenthesis, (R).  

 Citing Viewpoint in Methods Section  1.12.1

Please use the following format when citing the ViewPoint EyeTracker ® in the Methods Section of your 
papers. 
 ViewPoint EyeTracker ® by Arrington Research, Inc. (www.ArringtonResearch.com) 

Please also include the web site address (www.ArringtonResearch.com), where ArringtonResearch is 
one word. Correct capitalization is not required for the web link to work properly, however using only a 
capital A and a capital R is the preferred form and it makes the link more readable.  

We would love to hear about your research, published or not, please let us know what you are working 
on! 

 Citing Viewpoint in References Section  1.12.2

Please also give credit in the References Section as: 
 
Arrington, Karl Frederick (2016) “ViewPoint EyeTracker® UserGuide” 
Arrington Research, Inc., Scottsdale, Arizona U.S.A. 
 

http://www.arringtonresearch.com/


 
Arrington Research 

3/2/2016 
Page 7 

Chapter 2.  Overview of ViewPoint  

2.1 Complete Environment 

The ViewPoint EyeTracker ® provides a complete eye movement evaluation environment, including 
Fixation, Saccade, and Drift classification, Region of Interest events, Integrated Stimulus Presentation, 
Simultaneous Eye Movement and Pupil Diameter Monitoring, and a Software Developer’s Kit (SDK) for 
communicating with other applications. It incorporates several methods from which the user can select to 
optimize the system for a particular application. Basic DataAnalysis capabilities are also included. 

2.2 Interfaces 

There are many ways to interface to the ViewPoint EyeTracker ® for data synchronization, communication 
and control: 
 

 Graphical User Interface (GUI) 

 Command Line Interface (CLI) 

 Software Developers Kit (SDK) 

 Ethernet & ViewPointClient TM 

 Third Party applications 

 

 Graphical User Interface (GUI) 2.2.1

The most common controls are exposed as buttons, sliders, menu items etc. Please be aware that 
these are only a subset of the complete set of features and controls available through the CLI. 

 Command Line Interface (CLI) 2.2.2

The ViewPoint EyeTracker ® provides a Command Line Interface (CLI) that allows users to control 
almost every aspect of the program.  

There are many more CLI commands than there are GUI controls in ViewPoint EyeTracker ®. For 
example there are commands to allow fine control of ViewPoint EyeTracker® operations and behavior. 
There is a command for each GUI control. For example, to adjust the amount of data smoothing, to display 
/ hide various pen plots, freeze / un-freeze the eye camera video. There are commands to open, pause, 
resume, and close ViewPoint EyeTracker® data files. There are commands to insert remote synchronization 
data into the ViewPoint EyeTracker® data files. If there is an action that you need to perform but cannot 
find a GUI control for it, refer to Chapter 19 to see if a CLI command exists. The syntax for using CLI 
commands is described in Chapter 18.



 
Arrington Research 

3/2/2016 
Page 8 

 Using CLI Commands   2.2.3

There are many ways to send CLI commands to ViewPoint, these include: 

2.2.3.1 Settings Files 

Every Graphical User Interface (GUI) selection and adjustment that the user makes in ViewPoint (e.g., 
menu item selection, radio button selection, slider value) can be saved in a Settings file as a Command 
Line Interface (CLI) text string instruction, called a CLI command. These Settings files can then be loaded 
at a later time. The control values are stored as single line ASCII commands in the form of a keyword and 
parameters. When a Settings file is loaded, each line in the file is sent to the Command Line Parser (CLP).  

2.2.3.2 Interactive CLI Window 

Select the Menu Item: Windows > Command Line Interface to raise a window in which you may type 
and issue CLI commands directly to Viewpoint. Just type in the command and press the Send button. 
Chapter 18 describes the CLI commands in detail. 

2.2.3.3 FKey and TTL 

Most keyboards have a set of Function Keys, called FKeys for short , e.g.: F1, F2, etc. For 
convenience, CLI commands can be associated with FKeys, and also with TTL inputs (with the TTL 
option). The associations are shown in menu:  Help > Info > Shortcuts tab, or TTL Cmd tab. 

2.2.3.4 SDK/API 

CLI command strings can also be sent to ViewPoint from other programs while ViewPoint is running, 
which means that outside, “layered”, programs can have complete control of the ViewPoint EyeTracker®

. 

These command strings can be sent via the Software Developers Kit (SDK) with the function 
VPX_SendCommand(“some command string”). This can be done from programs running on the same 
machine or from programs running on remote computers via Ethernet and ViewPointClient. 

 Software Developer’s Kit (SDK)  2.2.4

The ViewPoint software package includes a powerful Software Developer’s Kit (SDK) that allows 
seamless, real-time interfacing with the ViewPoint EyeTracker. The SDK (a) provides real-time access to 
all ViewPoint data, (b) provides for calibration stimuli in the user’s Stimulus window, or for the user’s 
application to draw into the ViewPoint Stimulus and GazeSpace windows, (c) allows complete external 
control of the ViewPoint EyeTracker ®. The SDK interface is based on shared memory in a Dynamic Link 
Library (DLL). The SDK is event / message driven, so there is no CPU load from polling and provides 
microsecond latency. 
The SDK includes a consistent Application Programming Interface (API) for MS Windows and MAC. All 
CLI commands can be sent via the VPX_SendCommand (“CLIcommand”) function. Data is obtained via 
access functions of the form VPX_GetSomething(&dataVariable); see Chapter 20. 

 Ethernet & ViewPointClient TM 2.2.5

2.2.5.1 ViewPointClientTM for PC 

ViewPointClient software runs on a remote computer and communicates with ViewPoint. The client 
software uses a dynamically linked library to exchange data just like ViewPoint does, but typically takes 



 
Arrington Research 

3/2/2016 
Page 9 

less than one percent of CPU resources. This means that the same “layered” applications can be used on 
a remote computer just as easily as on the same computer. ViewPoint contains an Ethernet server; the 
ViewPointClient software establishes an Ethernet link with this server. ViewPointClient for PC is a 
separate program, and is included free with ViewPoint. See Chapter 17 for details. 

2.2.5.2 ViewPointClientTM for Mac 

The ViewPointClient for Mac is no longer a separate program; it has been integrated into the DLL-
based SDK, which simplifies the interaction. The layered application on the Mac calls 
VPX_ConnectToViewPoint to establish the client/server communication; see section 17.4 for details.  

2.3 Interfaces to Third Party Products 

 Integrity Suite TM 2.3.1

Integrity™ is a suite of interfaces between the ViewPoint EyeTracker® and third party applications. This 
suite is provided by Arrington Research, Inc., to ensure professional quality, uniform, complete, and 
thorough interfaces to the favorite products of our users. These interfaces provide access to data, 
complete eye tracker control, and data integration and synchronization, all in real-time. Integrity is 
included free with the ViewPoint product. 
Interfaces include: 

 MATLAB ® = ViewPoint EyeTracker® toolbox (PC & Mac) 

 E-Prime ® = EBasic interface 

 LabView ® 

 Python ® (PC & Mac) 

 Presentation ® = Binocular plugin for Neurobehavioral Systems 

 Gazetracker ® 

 Other Third Party Interfaces 2.3.2

Many third party applications provide the means to load our DLL into their program, which allows a 
user to call ViewPoint SDK functions from within these applications. These pplications include:  

 Vizard ® by WorldViz 

 SimCreator by Realtime Technologies 

 PsyScope ® 

 SuperLab ® by Cedrus 

 g.Tec ® products 

 Ryklin ® software products 

See our website for an ever increasing list of third party applications and hardware that work with 
ViewPoint. 

Finally, some venders also interface to the ViewPoint EyeTracker using the ViewPoint~Voltage™ 
option that provides Analog Voltage and TTL outputs. For example: 

 BIOPAC ® Systems 



 
Arrington Research 

3/2/2016 
Page 10 

2.4 Use the SDK to write your own Layered Applications. 

 SDK Communication 2.4.1

Layered applications communicate seamlessly with the ViewPoint EyeTracker either on the same 
machine, or on remote machines via Ethernet, using the ViewPoint SDK. 

Separate documentation and examples are provided in the folder ~/ViewPoint/SDK/. ViewPoint 
users are encouraged to write and share their own layered applications with the user community. We 
will be more than happy to assist. 

 Example Layered Interface Applications  2.4.2

The folder ~/ViewPoint/ExtraApps/ contains already compiled executable application programs 
from the example projects from the SDK folder. Try running the example layered applications to 
demonstrate communication with ViewPoint either directly via the DLL on the same machine, or 
indirectly via the DLL and client software running on a second machine. On a PC, simply, copy the 
sample interface applications from the main ~/ViewPoint/ folder; on a Mac use the sample application 
in the Mac ~/ViewPoint/Interfaces/ folder.  

For the PC, these may include the sample applications listed below, which will Open, Pause, Resume 
and Close data files, display streaming x and y position data, and also include a means to send CLI 
commands. 

 

 VPX_MFC_Demo.exe –  

 VPX_Win32_Demo.exe –  

 VPX_Basic_Demo.exe -  

 DataMarker.exe – This program allows easy manual insertion of data file marker 
characters into an open ViewPoint data file. (Not included in all releases).  
The functionality is the same as that via menu item: Windows > KeyPad / DataMarker. 

 
Note that it is impossible to launch the ViewPoint EyeTracker application using these interface 

applications on remote machines, because the client must already be connected to ViewPoint (rather 
than to the local DLL). The Stop ViewPoint button will work. 

2.5 Pilot Data 

It is extremely important that you read and understand this UserGuide. Chapters 4, 5, 6, 9, 10 and 11 
will get you started. Do not wait until your subjects are waiting. Calibrate and collect data on yourself 
first.  Always collect and analyze pilot data before running your experiments so that you understand 
exactly what you are getting. 

 



 
Arrington Research 

3/2/2016 
Page 11 

Chapter 3.  Different Calibration Methods 

 

Using an incorrect calibration procedure will give you unusable data. 

 

Sy
st

em
 

Head-Free 
SceneCamera™ 

Head-Fixed 
HeadLock™ 

Remote Systems 

Head-Mounted 
Display 
(HMD) 

 

 
 

 

 

 
 

D
es

cr
ip

ti
o

n
 The SceneCamera systems 

allow gaze position 
superimposed on real-world 
scene video.   

No head tracker is required. 
 

Head-Fixed systems are 
designed for visual 
psychophysics, etc. that 
require a stable viewing 
distance and position, or 
restriction of head movement. 

HMD systems are perfect for 
Virtual Reality, Augmented 
Reality, etc. 
 
 

 

The subject is free to move 
around. 

The subject’s head must 
remain fixed during the entire 
duration of calibration and 
data collection. 

The subject is free to move 
around. 
 

C
al

ib
ra

ti
o

n
 

To SceneCamera viewing 
area. 

Refer to section 5.5.2 
The calibration is with 

respect to the SceneCamera 
sensor that moves with the 
subject, NOT the scene image 
content that can change. 

Automatic On-Screen 
Refer to section 5.5.1 
Calibration is performed with 

respect to a computer screen 
or projector display. 

Automatic On-Screen 
Refer to section 5.5.1 
Calibration is performed with 

respect to the HMD display. 

O
u

tp
u

t 

ASCII format files showing eye 
movement relative to the 
SceneCamera viewing area.  

Movie files of the SceneCamera 
video showing the eye 
movement superimposed on it. 

ASCII format files showing 
Position of Gaze relative to the 
display screen used during 
calibration.   
Can make movie of screen (e.g. 

web page) and and eye 
movement, interaction. 

ASCII format files showing eye 
movement relative to the HMD 
screen. 



 
Arrington Research 

3/2/2016 
Page 12 

Chapter 4.  Software Installation  

Copy the ViewPoint folder from the CD-ROM to the hard drive of your computer. The program will not 
work properly if you try to run it from the CD-ROM. This folder is illustrated in Figure 1. The directory 
structure supplied must be maintained for proper functioning of the software. ViewPoint will not run 
without the VPX_InterApp.dll file.  You may start the program immediately by double clicking the 
icon of the ViewPoint.exe application program.   

Click on the ViewPoint.exe file for which you purchased a license. You can safely ignore or delete 
any others that may have been included.  

When using Windows Vista you must run the application as an administrator to be able to use any of 
the movie playing and recording features.  

We currently recommend Windows 7. 

 The ViewPoint EyeTracker
® 

Folder  Figure 1.

 

4.1 ViewPointLicense (.VPL) File 

The video capture boards and USB cameras (and optional hardware) contain serial numbers that must 
match one of the numbers encrypted into your ViewPointLicense (.vpl) file. This .vpl file is located in 
the ~/ViewPoint/License/ folder. The license file also specifies any options that may have been 
enabled. Your license file is named in the format YourName.vpl or 12345678.vpl. 

4.2 Program Layout 

The window layout may be customized. We start with one of the default window layouts that fit a 1024 
x 768 display. Most ViewPoint windows are normally attached to the ViewPoint parent window (they are 



 
Arrington Research 

3/2/2016 
Page 13 

child windows), but they may be set free, which allows, for example, the PenPlot window to be full 
screen on a secondary display. 

 User Windows  4.2.1

When ViewPoint is started, it displays several windows arranged as shown below.  
 

 Start-up Arrangement of the User Windows  Figure 2.

 

Note: The normal window layout requires a display resolution of at least 1024 x 768. An extended 
layout is also provided for display with a resolution of at least 1280 x 1024. Select menu item: 
Windows > Arrange > Larger Layout SXGA (1280x1024) . 

To use multiple displays, you may need to install a second display card into your computer and 
consult the computer’s operating manual for configuration settings.  

 
The window ControlBox is the usual pull down menu in the upper left corner of every window. 

ViewPoint adds functionality to some of its window ControlBoxes, such as: Free/Child toggle, and Clear 

Window. This is particularly useful in the PenPlot, History, and GazeSpace windows.  



 
Arrington Research 

3/2/2016 
Page 14 

 

 Window Descriptions Table 4.

Window Description 

EyeCamera Displays the video image of the eye and image analysis graphics. 

EyeSpace Displays calibration controls and calibration results. The relative locations of the 
pupil, glint, or difference vector, which were obtained during calibration, are shown 
in the graphics at the top of the window. The graphics rectangles (one for monocular, 
two for binocular) corresponds to the geometry of the EyeCamera video image. They 
provide information about calibration accuracy and allow rapid identification and 
correction of individual calibration errors by allowing manual recalibration of 
individual points or the ability to omit problem points. Refer to Chapter 8. 

GazeSpace Displays a miniature representation of the Stimulus window, allowing the 
experimenter to monitor eye movement in real-time. 

Controls Provides easy-access control of most common operations, grouped under the tabs: 
EyeA and EyeB tabs: Eye Image quality adjustments and tracking method specification.  
Criteria tab: Specify smoothing and other criteria to apply to the data. 
Display tab: Specify information to be displayed in the Stimulus and GazeSpace 
windows. Also to specify information to be displayed in recorded SceneMovies for 
users with the SceneCamera option. 
Regions tab: Specifies the GazeSpace MouseAction, including specification of: Regions of 
Interest (ROIs), the Calibration Region, Gaze Nudge, Calibrate on Content, Simulation, 
etc. 
Scene tab: (SceneCamera option only) Adjust brightness, contrast, hue, and saturation 
etc. of scene image; checkbox to show the SceneVideo in Stimulus window. 
Record tab: Quick and easy way to open, pause, close, and analyze data files as well as 
insert markers. 

Events Displays completed events and their durations, e.g., Saccades, Fixations, etc. 

History Provides feedback about CLI parsing, system performance, errors, etc. 

Stimulus Displays the stimulus image that the subject views, which is designed to be presented 
full screen, preferably on a second display. This window can also display the subject’s 
eye movement, ROI, etc., as on the GazeSpace window. Refer to Chapter 12. 

Penplot Displays real-time line graphs and numerical data values of, for example: X and Y 
gaze, velocity, torsion, pupil width, ROI hits, etc. The user may select which PenPlots 
to display using menu item PenPlot > *. The range of many of the PenPlot displays can 
be adjusted by clicking the right mouse button in the various PenPlot graphics wells.  



 
Arrington Research 

3/2/2016 
Page 15 

 Menu Navigation 4.2.2

The ViewPoint main menu bar is at the top of the ViewPoint application window, under theTitle bar. 
 

 The ViewPoint Main Menu Bar  Figure 3.

 
 

 
 

 

Menu Item Use this Menu to: 

File > Open, pause and close data files, 
Save and load Settings files,  
Load Images 

Windows > Open and close windows, specify window layout. Shift-click to bring a 
window to the front. 

Stimuli > Specify the type of stimuli to be used, 
Control the Stimulus window settings, and 
Specify the GeometryGrid settings 

PenPlots > Hide or show various penPlots, and 
Specify PenPlot window settings 

Interface > For GazeCursor and Eye Moves Mouse features, and 
For the Ethernet server interface. 

Binocular > Binocular EyeMovement Settings.   
Dimmed if Binocular Option not purchased. 

Help > Access system configuration information, 
View license Holder information, options, etc. 
Access the Documentation folder, and 
Link to the www.ArringtonResearch.com web site 

 



 
Arrington Research 

3/2/2016 
Page 16 

4.3 Criteria 

ViewPoint provides several criteria for accepting or rejecting data. Using these wisely and judiciously can 
substantially improve the performance in many situations. These criteria can help tag noisy blink data so 
that it can be easily eliminated from post-hoc analysis. They can also improve real-time performance 
and help protect equipment; for example when a galvanometer is controlled by the eye positions 
signals.  

These criteria can be divided into two categories: Feature Criteria and Movement Criteria. 
 

 Criteria Table 5.
Feature Criteria Movement Criteria 

Minimum Pupil width Fixation Drift Allowed 

Maximum Pupil width Saccade Velocity 

Pupil Aspect Criterion Fixation Time Criterion 

 

There are also criteria for certain actions, such as the dwellTime criterion for issuing a system mouse-
click event. 

The new user should be able to precede through the Quick Start sections in this UserGuide without 
needing to adjust these criteria. However, it is important to understand them prior to undertaking data 
collection. Further information is provided in later sections. 

 



 
Arrington Research 

3/2/2016 
Page 17 

Chapter 5. Quick Start Section 

This chapter contains all of the information necessary for a new user to quickly and easily get the 
system up and running. For simplicity, it assumes that only the Pupil Location method is used. However, 
for normal subject testing, the Glint-Pupil Vector method may be more appropriate (refer to Chapter 6.) 

5.1 Eye Camera & LED Illuminator Positioning 

This section describes the proper positioning of the Camera & LED. Refer to section 5.1.1 for Head 
Fixed systems and to section 5.1.2 for EyeFrame systems. In all cases the goal is to obtain an image of 
the eye similar to that shown below in Figure 4. In general, the eye should just fit, such that the corners 
of eye should be at the sides of the window. 

In general, an EyeCamera should not be more than 45 degrees below the “straight-ahead” line-of-
sight. 

 

 EyeCamera Window  Figure 4.

 

 
 

Generally, the image of the eye should be such that the corners of the eye (the canthi) are at the 
horizontal edges of the EyeCamera window. The camera may be closer in if the gaze is not 
eccentric. 

 

 Camera Positioning 5.1.1

Instructions for proper positioning of the Camera & LED when using the HeadLock™ or QuickClamp™ 
hardware: 

1. Position the camera about 40 to 45 degrees below the subject’s line-of-sight (as viewed 
from the side), and at the appropriate distance from the eye (which for the USB 220 
cameras mounted on the HeadLock is approximately 15 cm.)  



 
Arrington Research 

3/2/2016 
Page 18 

2. Position the LED so that it appears at the 11 o'clock position for the right eye and 1 o’clock 
for the left eye, when looking at the camera lens, such that the top surface of the LED and 
the camera lens are along the same horizontal plane. This allows both the LED and the 
camera to simultaneously be as high as possible, while not occluding the vision of the 
monitor.  

3. Move the camera mount sideways, such that the LED is centered along the optical axis of 
the eye while the eye is looking in the center of the display. This will result in the camera 
being slightly off axis (as viewed from above). In other words, if the subject looks straight 
down she should be looking at the LED, not at the camera lens. Relative movement between 
the head and the EyeCamera must be minimized, which is the purpose of the Arrington 
Research Precision Head Positioners (QuickClamp™ and HeadLock™) and camera system.  

 EyeFrame Camera Positioning 5.1.2

1. Place the EyeFrame glasses on the subject. 
2. Tighten the strap to minimize movement on the head.  
3. Use the collar clip to reduce cable weight and twisting (clip may be attached to the tail of 

the head strap). 
4. Adjust the position of the EyeCamera to obtain an image of the eye such that the pupil is in 

the center of the EyeCamera window when the subject is looking straight ahead, and the 
eyeball fills the maximum possible area, as shown in Figure 4.  

5. The lens on an EyeFrame EyeCamera can often be rotated manually by pinching the part of 
the lens extending from the housing. (Older models use the two holes on the lens front 
surface.) 

 Remote System Camera Positioning 5.1.3

As remote systems are sold to accommodate varying operating setups, exact positioning of the camera 
and illuminator will also vary, depending, for example, on the lens chosen. Position both the camera and 
illuminator to achieve a well illuminated image of the eye that fills the whole EyeCamera window. 

5.2 Pan/Zoom/AutoCenter 

Some systems (USB-220, including some other frame rates) allow software Pan, Zoom and pupil 
AutoCenter. 

 Panning 5.2.1

Holding the Right mouse button down in the EyeCamera window changes the cursor icon to a “move” or 
“drag” icon indicating that the Area Of Interest (AOI) can be panned left/right or up/down. The relative 
size and location of the AOI is shown in the upper left corner of the EyeCamera window; the AOI is 
shown as a red rectangle inside a green rectangle athat represnts the camera sensor; see Figure 5. 
During Setup, we recommend positioning the AOI in the center, before moving the actual camera to 
locate the subject’s eye.  



 
Arrington Research 

3/2/2016 
Page 19 

 Panning the EyeCamera AOI Figure 5.

 

 

 Zooming 5.2.2

The mouse wheel controls the zoom. 

 AutoCenter 5.2.3

AutoCenter tries to keep the pupil of the eye in the center of the Pupil Scan Area that is shown as the 
cyan rectangle in the EyeCamera window. AutoCenter automatically pans the AOI in the EyeCamera 
sensor. Figure 6 shows two images of a subject's right eye at different gaze positions with pupil 
AutoCenter enabled. In both cases, ViewPoint has centered the pupil within the Pupil Scan Area. 
 
Pupil AutoCenter is only useful, and thus only available, for the Glint-Pupil Vector feature method. The 
subject should calibrate with the Glint-Pupil Vector feature method selected. Pupil AutoCenter is not 
required during the calibration, but can be enabled during the calibration if desired. Once the calibration 
is complete, the user can enable and disable pupil AutoCenter by using CLI command: pupilAutoCenter ON 

 

 Pupil AutoCenter Figure 6.

 



 
Arrington Research 

3/2/2016 
Page 20 

5.3 Locating the Pupil – All Systems 

The following steps are applicable to all systems: 
a. Adjust the camera so that the pupil is centered in the EyeCamera window as the subject looks at 

the center of the display and the eyeball fills the maximum possible area as shown in Figure 4. 
b. Defocus the camera so that the corneal glint is spread to about the size of an eighth (or more) 

that of the pupil. Besides making the glint larger, defocusing also effectively lowers the intensity 
of small bright extra reflections (by virtue of the point spread function). Defocusing may be 
achieved by rotating the camera lens or by adjusting the camera closer or farther from the eye. 
Generally, the image of the eye should be such that the corners of the eye (the canthi) are at the 
horizontal edges of the camera window.  

c. Many third party LEDs will produce a doughnut shape of illumination. If that is the case, adjust 
the LED so that the darker center of the doughnut is in the center of the camera image, this will 
put the brighter ring around the edges near where the canthi and lids are located. This 
doughnut may be more easily observed by placing the palm of the hand, or a piece of paper, at 
the location of the eye and then moving the LED slightly.  

ViewPoint systems are designed to produce a uniform diffuse IR illumination and you should not 
see the doughnut effect. 

d. If the video image is too dark or too bright you can adjust the contrast and brightness settings 
by adjusting the Controls window > Brightness and Contrast sliders. When adjusting the brightness 
and contrast controls in ViewPoint, the general goal is to increase the range of gray levels as far 
as possible, that is, to DECREASE the contrast as much as possible, while MAXIMIZING the 
blackness of the pupil and the whiteness of the glint. However, the glint should be the only spot 
that is saturated to maximum brightness.  
The EyeCamera window > Monitor icon > Histogram window can help with optimizing brightness and 
contrast. 

e. Decrease the brightness until you obtain a pupil that is as black as possible and adjust the 
contrast so that the glint, and only the glint, is of maximum white. 

f. AutoImage may help, especially in varying light conditions. See CLI command: videoAutoImage. 

 Corrective Lenses (Eye Glasses)  5.3.1

There are two main effects relating to the fact that both the front and back surfaces of the 
corrective lens will reflect light. First of all, the reflected light is wasted so that the illumination of the 
eye (light source path) and the image of the eye (light to camera) will be attenuated. Second, the 
reflection from the illumination may be bounced back into the camera, which will be very bright and 
cause the auto-iris of the camera to produce a darker image of the eye.  

If there is a problem with the front surface reflection of corrective lenses, try adjusting the angle of 
the lens relative to the camera-LED assembly. There are two ways to do this:  

Slightly tilt the corrective lenses by moving the earpiece so that it is near the auditory canal (hole in 
the ear) rather than resting on top of the ear; this is fairly easy for lightweight springy metal frames, but 
may not stay in place with heavier frames. 

Slightly move the camera so it is more than 45 degrees below the line-of-sight.  



 
Arrington Research 

3/2/2016 
Page 21 

When de-focusing, it is preferable to move the focal plane farther away from the camera, rather 
than closer to it, because the latter will sharply focus on any dirt or debris that is on eye-glass 
lenses. 

5.4 Thresholding – All Systems  

For simplicity and ease of use, keep the AutoImage and Positive Lock Threshold tracking options 
checked. If you do need to adjust these manually, refer to Chapter 6.  

 

The PupilScan Area must be at least 50% of the EyeCamera image area for the AutoImage to 
function well. Refer to 6.5 

 

If your subject has a small pupil then you need to scan more densely (scan dots closer together); 
adjust the Scan Density to 5. 

5.5 Calibration 

Refer to the subsection here below for your particular system. 

Try to use at least 12 calibration points, 16 points usually provides very good calibration. Using 6 
points will provide accurate calibration only along the horizontal axis and should ordinarily be 
avoided. 

 

It is good practice to integrate slip-correction into your experiments. Choose a good center point 
and perform the slip correction at the working distance. 

 
This section is the Quick Start description of calibration; more detailed information is provided in 

Chapter 8.  

 Calibration (Head Fixed and HMD Systems) 5.5.1

For the HeadLock™ System, QuickClamp™, Remote system, or other systems where you are fixing 
the head, with respect to the display monitor, on which the Stimulus window is to be displayed, so that 
when the subject is looking straight ahead, their Position of Gaze is approximately two thirds of the way 
up the monitor vertically and centered horizontally. The Stimulus window should be placed so that the 
subject can see it easily when positioned comfortably. This is best achieved using a second monitor and 
full screen stimulus display, refer to Chapter 12. 

After successful thresholding as outlined in 5.4 follow the steps below:  
1. Warn the subject of the onset of the calibration stimuli to ensure successful calibration.  
2. Instruct the subject to look directly at the center of each stimulus until it converges to a point. 

The default is for the calibration StimulusPoints to appear in random order. 
3. Start the calibration by pressing the Auto-Calibrate button on the EyeSpace window. The warning 

message “Get Ready” will appear briefly on the screen to draw the subject’s attention to the start 



 
Arrington Research 

3/2/2016 
Page 22 

of the calibration process. This can be suppressed or the display time adjusted via the EyeSpace 

window > Advanced button : Advanced Calibration window > Warning slider. 
4. During the calibration process, ensure the pupil is accurately located at all times by monitoring 

the green dots and the yellow oval, i.e., monitoring the image segmentation.  
5. Check the calibration by examining the positions of the calibration DataPoints in the EyeSpace 

window. Successful calibration will be indicated by a rectilinear and well-separated 
configuration of green dots corresponding to the locations of the pupil at the time of calibration 
point capture. See Figure 13 and Figure 14. 

6. Stray calibration DataPoints can be identified and re-calibrated or omitted. The EyeSpace window 

> DataPoint slider allows the user to select stray calibration points to be recalibrated. The active 
DataPoint is highlighted in the EyeSpace window > graphics well. DataPoints can also be selected 
with the mouse by left clicking the calibration point in the graphics well. 

7. Select the stray calibration point by left mouse clicking that DataPoint in the EyeSpace window > 

graphics well.  
8. Instruct the subject to look at the center of the stimulus and represent the calibration point by 

pressing the EyeSpace window > Re-present button. The warning message “Get Ready” will appear 
briefly on the screen at the calibration point location to draw the subject’s attention to the re-
presentation location. (This can be suppressed or the display time adjusted.) This exercise can 
be repeated with as many calibration DataPoints as necessary. If the calibration points are not 
rectilinear, for example, there are lines crossing then complete re-calibration is necessary. 

9. If a particular point cannot be recalibrated, then select that point and press the Omit button. 
10. A quick check of calibration accuracy may be done by asking the subject to look at particular 

points on the stimulus and using the GazeSpace window to verifying that the gaze point matches 
up with the points looked at.  

5.5.1.1 HMD Partial Binocular Overlap 

Some wide field-of-view (FOV) head mounted displays (HMDs) employ partial binocular overlap 
(PBO) of the displays, such that there is stereo in the central overlapped area, but monocular imagery in 
the eccentric, temporal parts of the displays. This presents a challenge to calibration, because there are 
calibration points in each display that are not in the other display.  

Additionally, PBO displays are often canted (tilted) such that they are not coplanar with one 
another. This further complicates things because the imagery, and the calibration points, must be 
keystone predistored for them to align. 

ViewPoint completely handles these situations by allowing separate, custom calibration sets for 
each of the two eyes. See sections 8.12.4.2 and 19.12.11. The calibration points displayed in the 
GazeSpace and Stimulus windows are now color coded according to the specified eye display color. 

 

 Calibration (SceneCamera) 5.5.2

Calibration is performed relative to the viewing area (pixels) of the SceneCamera, NOT the video image 
content. This is analogous to calibrating relative to the stimulus display screen and NOT the image 
displayed on it. 



 
Arrington Research 

3/2/2016 
Page 23 

After ensuring successful eye image thresholding, perform the following calibration steps to provide 
Position of Gaze with respect to the SceneCamera image. 

 
1. Select menu item: Stimuli > View Source > Scene Camera. This will cause the video from the 

SceneCamera to be displayed in the GazeSpace window. It also enables the calibration settings 
Snap Presentation Mode and Auto-Increment (refer to EyeSpace window advanced settings) and 
causes the calibration StimulusPoint array to be displayed in the GazeSpace window.  

2. Adjust the SceneCamera so that the center of the subjects straight ahead field of view is at the 
center of the image. 

3. If necessary, adjust the brightness and contrast of the SceneCamera image using the Controls 

window > Scene tab > Brightness and Contrast sliders. Reduce brightness such that overlays are 
visible. 

4. Ask the subject to stand or sit comfortably and to remain still for the duration of the calibration 
process. They should not look at the computer screen.  

5. Position a StimulusPoint (pen top, your finger tip, or a laser pointer dot on a wall or board) in 
front of the subject such that the StimulusPoint appears inside the GazeSpace window inside the 
active (blue) calibration circle. All calibration StimulusPoints should be in a plane that is 
perpendicular to the subject’s line-of-sight. 

For best accuracy, try to calibrate at about the viewing distance at which the subject will typically 
be working. 

 
6. Ask the subject to move their eyes (keeping their head still so that the pen remains in the active 

calibration point) to look at the StimulusPoint. 
7. When you are sure that they are looking at the StimulusPoint (get verbal confirmation) select 

the EyeSpace window > Re-Present button. The * (asterisk) on this button indicates “Snap 

Presentation Mode” and the ++ indicates “Auto-increment”. The F8 FKey can be used as a shortcut 
key for this button (this is the default FKey command). 

8. Repeat steps 5-7 with each active calibration point until you have completed the set. 
9. Examine to the distribution pattern of the calibration DataPoints in the EyeSpace window. 

Successful calibration will be indicated by a rectilinear and well-separated configuration of green 
dots corresponding to the locations of the pupil at the time of calibration point capture. Uniform 
curvature of the field of dots is acceptable. See Figure 13 and Figure 14 

10. Stray calibration DataPoints can be identified and re-calibrated. Select the stray calibration point 
by left mouse clicking the DataPoint in the EyeSpace window. Alternatively the EyeSpace window 

> DataPoint slider allows the user to select stray calibration points to be recalibrated. The active 
DataPoint is highlighted in the graphics well. 

11. Repeat steps 5-7 for the stray calibration point. This exercise can be repeated with as many 
calibration DataPoints as necessary. If the calibration points are not rectilinear, for example, and 
there are lines crossing, then complete re-calibration is necessary.  

12. A quick check of calibration accuracy may be done by asking the subject to look at particular 
points on the stimulus and using the GazeSpace window to verifying that the GazePoint matches 
up with the points looked at.  



 
Arrington Research 

3/2/2016 
Page 24 

13. A consistent offset in position can be corrected using the slip-correction feature. Select a 
calibration DataPoint in the middle of the group. Repeat steps 5-7 above but press the Slip-

Correction button instead of the Re-present button. This automatically adjusts the calibration to 
compensate for the measured slip in the X and Y planes.  

 

The line-of-sight of the SceneCamera is not exactly the same as that of the eye. This will cause a 
vertical offset called parallax error, when the distance of the calibration point (plane) is different 
from the distance of the GazePoint. The Binocular version of the SceneCamera system includes 
automatic and manual correction for this parallax error.  See section 9.2. 

5.6 Stimuli 

 Choosing the Type of Stimulus 5.6.1

The ViewPoint EyeTracker can be used with a variety of types of visual stimulus environments, 
including (a) stimulus images presented in the ViewPoint Stimulus Window, (b) real world environments 
as would be viewed while walking about captured by the EyeFrame SceneCamera, or (c) interactive work 
on a computer display captured as a movie of screen snapshots. See menu item: Stimuli > View Source >. 
You can also interface to third party applications e.g. stimulus presentation and experimental control 
programs, and virtual reality applications; however these are beyond the scope of this Quick Start 
Section. See ~/ViewPoint/Interfaces/ folder in the. 

The following sections describe setting up various stimulus environments and saving data in these 
environments. 

 ViewPoint Stimulus Window 5.6.2

Using ViewPoint in head fixed mode or with an HMD, you can present stimuli in the ViewPoint 
Stimulus window as follows: 

1. Present static BMP images and sequences of BMP images in the ViewPoint stimulus 
window. The GazePoint over the images is recorded. Select menu item: 
Stimuli > View Source > ViewPoint Stimulus window.  

2. Stimulus movies: Future capability. 

 Interactive Computer Display 5.6.3

Screen Movies: the subject’s GazePoint is recorded as they interact with the computer display screen. A 
movie is recorded that can then be played back showing the eye movement as the subject scrolls, opens 
and closes windows, etc. Select menu item: Stimuli > View Source > Interactive Computer Display.  

 SceneCamera Systems 5.6.4

When the SceneCamera option is enabled, the user can select menu item: Stimuli > View Source > Head 

Mounted SceneCamera the stimulus is then the real world scene as the subject moves freely around. If the 
SceneCamera option is enabled, whenever a ViewPoint DatatFile is recorded, a SceneMovie will also be 
created. There are several options for the SceneMovie, including format, selection of overlay graphics, 
and compression. ViewPoint synchronizes the SceneMovie with the DataFile by asynchronously inserting 
a TimeStamped frame number every time a movie frame is stored. This allows retrieving the 
corresponding SceneCamera video frame image as the data from the DataFile is read. Eye movement 



 
Arrington Research 

3/2/2016 
Page 25 

data values can also be stored inside the movie frame (currently this is limited to uncompressed 
movies). This allows the eye tracking data to be later extracted from the SceneMovie without reference 
to the DataFile. 

 Show SceneVideo in Stimulus window 5.6.5

To display the SceneCamera video in the Stimulus window, check the Controls window > Scene tab > 

Show SceneVideo in Stimulus window checkbox, or use CLI: ShowSceneVideoInStimulusWindow BoolValue 

5.7 Data Collection – All Systems 

Now that the system is calibrated, data can be collected. You can select the required sampling rate using 
the monitor icon on the EyeCamera Window. This will bring up a menu with various options depending 
upon the product that you are using.  Refer also to Chapter 13 Data Collection. 
To start recording the data to file select menu item: File > Data > New Data File. This will prompt you to 
create a new DataFile in the default folder: ~/ViewPoint/Data/.  When a DataFile is open the Controls 

window > Record tab will show two lines similar to this: 
 
 File: “2014-11-25;13-17-23.txt” 
 Data:  OPEN  00h 00m 0.773s PAUSED  
 
The menu item: File > Data > Unique Data File will create a new data file with a unique name to be opened 
without having to go through the File Dialog box.  
Recording can be paused at any time by selecting menu item: File > Data > Pause Data Capture  ^P. When 
data storage is paused the Controls window > Record tab will display PAUSED, as shown above. To stop 
recording, select menu item: File > Data > Close Data File. The window will indicate that the file is CLOSED.  
 
You can also use the Controls window: Record tab for easy data collection controls.   
See Figure 7 below: 

 



 
Arrington Research 

3/2/2016 
Page 26 

 Controls Window: Record Tab Figure 7.

 

 
 

 

New Recording button: Creates a new DataFile with a unique name constructed from the date and 
time, and immediate starts recording (unless Pause is active). This button has the same effect as the GUI 
menu item:  File > Data > Unique Data File, or the CLI command dataFile_NewUnique .  If the Shift-key is 
depressed when this button is pressed, the new DataFile dialog box will appear which allow the user to 
enter a DataFile name of their choosing; this is the same as CLI command: dataFile _DialogBox, or GUI 
menu item: File > Data > New Data File. 

 
Pause/Resume Button: Pressing this button toggles between pausing and resuming the recording of 

data into the FataFile. This button has the same effect as the GUI menu item: File > Data > Pause Data 

Capture, or the CLI command dataFile_Pause Toggle (or the pair of CLI commands dataFile_Pause and 
dataFile_Resume ). 

 
Mark Button: Sequentially inserts an alphabetic marker character ‘A’ to ‘Z’ into the DataFile. The 

inserted character can be observed in the Seconds line graph in the PenPlot window. On the first call, this 
is the same as the CLI command: dataFile_InsertMarker A . On subsequent presses, this button has the 
same effect as the CLI command dataFile_NextMarker .  The sequence restarts after it gets to 'Z'. The 
sequence can be reset at any time by holding the Shift-key when depressing the Mark button, or with the 
CLI command: dataFile_RestartMarkers . See also GUI menu item: Windows > KeyPad / DataMarker. 

 



 
Arrington Research 

3/2/2016 
Page 27 

Close Button: Closes the DataFile. This button has the same effect as the GUI menu item:  
File > Data > Close Data File, or the CLI command dataFile_Close .  
 
Browse Button: Opens the DataFile open dialog box, from which the user can select a data file that 

will be opened by the DataAnalysis program. This button has the same effect as the GUI menu item:  
File > Data > Edit Data File … , or the CLI command: dataFile_AnalyzeDialog . 

 
Analyze Button: Immediately closes any open data file and then opens the most recent dataFile in the 
DataAnalysis program. This button has the same effect as the GUI menu item:  

File > Data > Analyze Last Data File or CLI command dataFile_CloseAndAnalyze . 
 

For further information on data file formats refer to Chapter 13 Data Collection. 
To specify a different Data Analysis program, refer to 14.3 Post-Hoc. 

5.8 Recording Scene and Screen Movies  

 Recorded Movie Format 5.8.1

The default movie format for most systems is AVI 2.0. We recommend this format be used unless 
there is some good reason to do otherwise. HighSpeed systems may use VPM movies for better 
performance. Recording length is limited only by disk space. 

Menu item: File > Data > SaveMovie Compression (AVI2 only) > … shows all codecs currently available on 
your computer in the menu list. CLI command: saveMovie_DumpCodecs prints the available codecs in the 
History window. Available codecs depend upon the system; third party codecs can be added. 

Compression can be CPU intensive and may result in lost frames. Lossy compression will corrupt 
any data values that are embedded in the movie frames 

Use Display of Movie Data 
ViewPoint provides the user with two options for way the data is saved and displayed on the scene 
movie. Care must be taken to choose the one most suited to your needs. Menu Item: File > Data > Save 

Movie DataMode > … . 
 

1. Painted (default) 
When this option is selected, all the overlay graphics selected to be shown in the 
GazeSpace window are also permanently painted into the frame images of the movie. This 
is a very convenient way to make easily distributable movies with gaze position overlays. 
These overlays cannot be removed. The user should take care to deselect any overlay 
graphics, such as the calibration array, if they are not wanted as a permanent part of the 
movie. 

2. Embedded 
When selected, several eye tracker data values are also stored inside the movie frame. 
This allows the eye tracking data to be later extracted from the SceneMovie without 
reference to the DataFile, and it allows the user to choose which data to overlay during 
the post-hoc analysis. Currently this is only available with no compression.  



 
Arrington Research 

3/2/2016 
Page 28 

 Display of Overlay Graphics in Recorded Movie 5.8.2

Historically, the SceneCamera movie was recorded with the same overlays that were selected for the 
GazeSpace / SceneCamera window. This often led to movies with unwanted overlays, because people 
forgot to de-select options like Calib Region and ROI Regions. As of version 2.8.4.559, when the 
SceneCamera is active, a third column of check boxes will appear in the Controls window > Display tab, 
which allow control of what overlays appear in the SceneCamera movie (SceneMovie). These can also be 
separately set with CLI command: SceneMovieGraphicsOptions +option -option , as well as for the 
GazeSpace window, with the previous command: GazeSpaceGraphicsOptions  +option  -option . 

 Compression 5.8.3

When recording AVI movies, the user can select to compress the movies if required. Select menu 
item: File > Data > SaveMovie Compression. The default is None, that is no compression, because 
compression increases the CPU burden, can result in loss of data because of the extra time required, and 
if not lossless, will corrupt any data that is embedded inside the movie frames. The codecs that appear 
depend upon which version of the operating system that you are using, and which codes the user has 
downloaded or installed with other applications. Be careful, not all codecs are free.  

If available on your computer, we have found reasonable success using Intel Indeo version 5.10 
and higher codecs (IV50 is the fourcc code). This is suggested because it is supposed to be available on 
most all machines (relieving the user from the ordeal of selecting a suitable codec, searching for and 
installing codecs and getting involved with cumbersome codec licensing issues), and because it provides 
reasonable quality images without overwhelming CPU burden.  

Some compression codecs are time consuming and may slow down the performance of 
ViewPoint and its ability to save data and movie frames. 

 

Digital movie creation and playing is not a fully mature area in computer science; as it evolves, so 
will with ViewPoint EyeTracker movie interface and format and compression options. 

5.9 DataAnalysis program 

AVI movies with or without Painted Data, either Compressed or Uncompressed, will be loaded 
automatically into the DataAnalysis.exe program (see separate PDF documentation) when the 
corresponding data file is loaded. 

The ViewPoint DataAnalysis.exe program is currently provided as a beta version, without 
charge and AS IS; it may be useful, but ARI currently provides no official support. 

5.10 Analysis Options 

 Head Fixed and HMD Systems 5.10.1

There are many options to view and analyze the data recorded, including: 
1. Real-time in the GazeSpace and PenPlot Windows.  
2. Using the DataAnalysis program provided free, as is, with ViewPoint.  See separate PDF 

documentation. 



 
Arrington Research 

3/2/2016 
Page 29 

3. Post-hoc analysis of the ASCII data files using Excel, MATLAB, Mathematica, etc. 

 Playing Scene and Screen Movies 5.10.2

AVI without Painted data requires the associated ViewPoint DataFile for the eye tracking data. The 
movie frame number is interleaved with the data records in the DataFile. 
AVI movies with Painted Data, either Compressed or Uncompressed, can be easily distributed, 
downloaded, and played with most any movie player software, including Microsoft Media Player. This is 
by far the simplest and easiest, and is therefore the default. 
To play VPM movies you need to use the VPM_Viewer.exe program. This extracts the eye tracking data 
from the frames of the movie and provides the user with data display options. 

5.11 Frequently Used Settings  

You can create Settings files and place them in the StartUp folder that is located in the folder named 
“Settings” to specify frequently used settings. For example, you may wish to specify brightness and 
contrast settings applicable for your subject population, or to have Binocular Mode automatically turned 
on. When ViewPoint is launched it loads in all of the .txt files in this folder, which can reduce setup time.  

5.12 Preferred Window Layout 

A preferred startup window layout can be saved using menu item: File > Settings > Save Window Layout. 
This can then be reloaded using the load settings menu item. Alternatively, place it in the folder: 
~/ViewPoint/Settings/StartUp/. 

5.13  Accelerator Keys & FKeys 

Accelerator keys are used to make menu selections with the keyboard, rather than the mouse. The most 
current list can always be found within ViewPoint by selecting menu item: Help > Info > ShortCuts tab. The 
circumflex character ’^’ represents the Control-key held down as a modifier-key.  
The user can associate an FKey with a CLI action. This is done via the CLI interface (see section 16.5); for 
example: 
 FKey_cmd 11  {  dataFile_NewUnique  } 

 FKey_cmd 12  {  dataFile_Pause Toggle  } 

 FKey_cmd 1   {  videoFreezeSync  Toggle  }   

 // Can use Toggle argument instead of On/Off, allowing one FKey to be used! 

These associations can be viewed in the menu: Help > Info window > ShortCuts tab, refer to 19.26 

5.14  Printing 

Many of the ViewPoint windows can be printed using menu item: File > Print > … To include the current 
date and time on the prints, check menu item: File > Print > DateTimeStamp Printouts. 
 

You may want to select Freeze before Print to prevent pull down menu occlusion. 

 
 



 
Arrington Research 

3/2/2016 
Page 30 

Chapter 6.  Locating the Pupil and Glint (All Systems) 

The ViewPoint software comes with two very powerful features that will automatically and 
continually provide the best setting for tracking each subject: 

 Video AutoImage: Click the Controls Window > Eye tab > AutoImage check box. When checked 
ViewPoint will automatically adjust the brightness and contrast values to optimal settings. 
Only the region within the pupil scan area is examined, so the pupil scan area rectangle 
must be of sufficient size for the algorithm to sample a range of gray levels, otherwise the 
algorithm will fail. 

 
 Positive-Lock Threshold-Tracking: Click the Controls Window > Eye tab > 

Positive-Lock Threshold-Tracking check box. Positive Lock provides continuous automatic 
feature threshold adjustment. Note: this only adjusts the pupil threshold; the glint 
threshold must be adjusted manually. 

 
It is highly recommended that the user works first with these features before making any manual 

adjustments. However, there will occasionally be situations and subjects that may require some manual 
intervention to provide the most successful tracking.  

The Controls window: EyeImage tab is shown below  
 

 Controls Window: EyeA or B Tab  Figure 8.

 

 



 
Arrington Research 

3/2/2016 
Page 31 

6.1 EyeCamera Window 

The EyeCamera window displays the video-image of the eye, as well as overlay-graphics that graphically 
provide information about image segmentation and performance, see Figure 9.  The overlay graphics 
include: Thresholding results (e.g., green dots indicating dark areas), Pupil Location and Diameter 
Calculation results (yellow OvalFit to pupil), Corneal Reflection location results (red OvalFit to glint).  
The mouse is used in this window to pull (drag-out) a rectangle to define a limited search area, 
sometimes called a gate, for both the Pupil and Glint. 
 

 EyeCamera Window  Figure 9.
 

 
 
 
 
 
 
 
  
 
  

 
 
 
 
 
Search regions are defined by dragging out a rectangle with the mouse.  
 

6.2 Feature Method 

A feature is any content in the video image that can be identified, located and tracked; these include the 
dark pupil and the bright corneal reflection, i.e., glint. The Controls window > Feature Method combo box 
allows the user to select which features to use. The feature methods fall into two basic categories: single 
DataPoint methods and multiple DataPoint methods. Which method to use is probably best determined 
through experimentation.  

 Single DataPoint 6.2.1

The single DataPoint methods, for example using Pupil Location Only or specular corneal Glint Location Only 
are very sensitive to slight sideways head movements. Any head movement is completely confounded 
with eye movement. The Glint Location method is normally useless, but is included for educational 
purposes. 

 Multiple DataPoint 6.2.2

The multiple DataPoint method uses the Glint-Pupil Vector difference between (i) the center of the pupil 
and (ii) the center of the specular corneal reflection.  

Pupil Search Area Adjustment 

Pupil-Glint Offset Adjustment 

Glint Search Size Adjustment 

Lock Search Area Adjustments  

Toggle Show Threshold Dots  

Video Controls 

Freeze Video  



 
Arrington Research 

3/2/2016 
Page 32 

6.2.2.1 Advantages 

This is more robust against small movements of the head with respect to the camera. The corneal 
reflection (CR) and the dark pupil (DP) move together as the head moves (translates in the x-y plane that 
is normal to the optical axis of the camera). By taking the vector difference between these two signals, a 
relatively translation-invariant point-of-regard eye tracking system can be achieved.  

6.2.2.2 Disadvantages 

There are several disadvantages of the Glint-Pupil Vector method. (a) There are now two sources of video 
and segmentation noise instead of one. (b) Given a change in viewing direction, the vector variation is 
smaller than the variation of the pupil (or the glint) alone. The result is a lower resolution and lower 
signal to noise ratio. (c) The vector method is sensitive to a different type of translation error. The Glint 

Location Only and Pupil Location Only methods are particularly sensitive to translation of the head in a 
horizontal (sideways, x-axis) or vertical (up/down, y-axis) direction and less sensitive to in-and-out 
(closer or farther from the camera, z-axis) movement of the head. By contrast, the Glint-Pupil Vector 
method is robust against x-axis or y-axis movement, but is more sensitive to z-axis movement of the 
head, because this affects the length of the calculated vector; that is, the vector becomes shorter as the 
head is moved backward away from the camera. This is particularly true when the camera is close to the 
eye, because the angular field of view is wider. If a more remote camera is used it will be less sensitive 
to Z-axis variation.  

 Slip Compensation 6.2.3

The Feature Method combo box also includes a Slip Compensation method described in section 6.9, and 
data Simulation options described in section 6.3 below. 

6.3 Simulation of Gaze 

Simulated data can be very useful for learning how things work and for debugging. Select the Controls 

window > Regions tab > Simulation radio button.  The adjacent drop-down menu allows selection between 
simulation modes: Manual or Pattern that are described here below. 

 Manual Simulation 6.3.1

Next to the Simulation radio button, select Manual from the drop down menu. Manual Simulation allows 
the user to use the mouse to simulate the POG.  Click or hold and drag the mouse button in the 
GazeSpace window. Note that the smoothing operation is still applied, so unless smoothing is set to one 
(turned off) it may take several clicks at a location before the gaze point indicator moves to the location 
of the mouse. Holding and dragging a left mouse-click will move EyeA’s POG.  Holding and dragging a 
right mouse-click will move EyeB’s POG.  To move both eyes together, you must start by holding down 
one of the mouse-clicks, and then engage the other mouse-click before moving the mouse.  Now both 
eyes should be locked together and both POG should move together effectively creating a single point. 
The pupil and glint quality codes are set to best-quality (as soon as the user moves the mouse in the 
GazeSpace window) so that subsequent operations are not impeded. Note: the eye video will be frozen. 



 
Arrington Research 

3/2/2016 
Page 33 

 Pattern Simulation 6.3.2

Next to the Simulation radio button, select Pattern from the drop down menu. This provides simulated eye 
positions data in the form of a continuous test pattern that is useful for developing and debugging 
interfaces, such as layered SDK program interfaces, Ethernet client/server connections, etc.  See CLI: 

controlsTab Regions;  GazeSpace_MouseAction Simulation;  simulationMode Pattern 

GazeSpace_MouseAction None  

6.4 Thresholding 

The software attempts to locate the pupil by searching for a dark region within the pupil search area. 
Select: Controls window: EyeA or EyeB tab, Feature Method group, Pupil Location.  Adjusting the Controls 

window > Threshold group Pupil slider controls which luminance values to include or exclude. The slider 
adjusts the threshold level (sensitivity) for the pupil. Moving the slider to the right raises the dark pupil 
threshold ceiling, allowing more (lighter) gray levels to be counted as part of the dark pupil. Clear focus 
is not always optimal for obtaining good segmentation, because display screen reflections over the pupil 
can sometimes confuse the image segmentation process. Also, defocusing can cause the specular 
corneal glint to appear larger, which can make it easier to locate.  

6.5 Setting the Scan Density 

The resolution at which the program samples pixels in the video image is adjusted by the Controls window 

> Threshold group Scan Density slider. The finest resolution is with the slider set to the left, as the slider is 
moved to the right, only every n'th pixel is examined, where n is the actual Scan Density value. 
ViewPoint works by isolating the pupil and corneal reflection in the video image. To segment the image 
properly, the intensity-threshold levels must be appropriately set. The pupil and the corneal reflection 
are located by first taking the mean position of all sample points within threshold limits. The spatial 
resolution of the sampling may need to be adjusted to optimize speed or accuracy. Moving the slider to 
the right increases the sample spacing (coarse) which reduces the sampling resolution and 
correspondingly the number of dots shown. Moving the slider to the left increases the resolution (fine). 
The result of the sampling resolution is graphically displayed when the Show Threshold Dots button on the 
EyeCamera window is toggled on.  

It takes time to scan pixel values and to paint them. It is very useful for determining what 
Segmentation Threshold and Scan Resolution settings are optimal. Once optimal settings have 
been found, the scan density should be reduced as far as possible to reduce the computational 
burden. If fine scan resolution and a large scan area are required, then the Show Threshold Dots 
may be turned off to remove the computational burden of painting the colored dots.  

 

If your subject has a small pupil then you need to scan more densely (scan dots closer together); 
adjust the Scan Density to 5. For even smaller pupils you will need to change the minimum 
allowed with the CLI: minimumPupilScanDensity 1 . 

  



 
Arrington Research 

3/2/2016 
Page 34 

6.6 Manual Thresholding of the Dark Pupil 

 
Follow the steps below to manually undertake the manual Thresholding process for the Dark Pupil:  

 

 Thresholding to Identify the Dark Pupil  Figure 10.

  

 

 
1. Toggle show threshold dots “ON” using the button in the EyeCamera window. 
2. Ask the subject to fixate at the center of the display screen. If self-testing move the EyeCamera 

window to the center of the display screen.  
3. Select the Pupil Search Area Adjustment icon at the top right of the EyeCamera window, illustrated in 

Figure 9. Use the mouse to drag out a rectangle that limits the area in which to search for the pupil. 
In particular, use this to eliminate dark shadow areas that could be confused with the pupil. The 
OvalFitoval fit algorithm will continue to fit the pupil beyond the limits of the pupil search area. 
Consequently, the pupil search area can be substantially smaller than first imagined. 

4. Press the Controls window > Threshold group > AutoThreshold button.  

Pressing the AutoThreshold button automatically sets desirable Light-Reflection and Dark Pupil 
threshold levels. After this is done, the user may want to make further adjustments, which is easily 
done using the sliders.  

5. If necessary, adjust the Controls window > Pupil Threshold slider to ensure that the green dots appear 
only in the pupil and that the yellow oval outlines the pupil and is fairly circular (note: that the 
PenPlot window > Pupil Aspect ling graph displays the oval’s aspect ratio, 1 = perfect circle). The yellow 
ellipse indicates where the program has located the area of the pupil.  

6. If too many dark areas other than the pupil have green dots, adjust the dark pupil threshold slider to 
the left. Alternatively, if insufficient pupil area is being identified as dark (with green dots), adjust 
the Pupil Threshold slider to the right. The Positive-Lock Threshold-Tracking attempts to provide optimal 
tracking; however it is not appropriate for all subjects or situations.  

Video Controls 

Freeze Video  

Toggle Show Threshold Dots 

Pupil Search Area Adjustment 

Lock Search Area Adjustments 



 
Arrington Research 

3/2/2016 
Page 35 

7. After the pupil has been isolated, adjust the scan density to use the minimum number of dots that 
can reliably and consistently locate the pupil. Correct thresholding of the Dark Pupil is illustrated in 
Figure 9. The default set on startup is optimal for most situations and you should very rarely need to 
adjust this. 

Unnecessarily high scan density settings together with large scan areas can cause the frame rate 
to drop and data can be lost.  

8. Ask the subject to look at each of the four corners of the Stimulus window to ensure that the pupil 
remains in the search box and to ensure accurate thresholding for all potential eye movements. i.e. 
the yellow oval outlines the pupil and is fairly circular. If self-testing, move the eye camera around to 
the four corners of the display to view the effects of pupil segmentation at different Position of 
Gaze. At any point the experimenter can toggle the image display On/Off. When Off it provides a still 
image of the eye to aid identification of successful thresholding. This is accomplished by freezing the 
video by pressing the Freeze Video icon button at the bottom right of the EyeCamera window, or by 
pressing the F1 function key that has its default CLI command videoFreezeSync Toggle . When frozen, 
the icon button will be outlined in red and a check mark appears next to the menu item. The 
EyeCamera window will also indicate ** FROZEN ** in the title bar.  

Selecting the option for Positive-Lock Threshold-Tracking will help in many situations. 

It takes time to paint the threshold dots on the screen, but it is very useful for determining what 
Segmentation Threshold and Scan Resolution settings are optimal. Once optimal settings have 
been found, the Toggle show threshold dots may be turned off to remove the computational 
burden of painting the colored dots.  

 

This section describes pupil only thresholding. With the Pupil Only method, any X, Y plane head 
movement will be confounded with eye movement. To measure movement that is invariant to X, 
Y plane head movement, use the glint-pupil vector method.  

6.7 Step-by-step guide for Glint-Pupil Vector method 

Follow the steps below to manually undertake the thresholding process for the Glint-Pupil vector 
method:  
1. Select Controls window > Glint-Pupil Vector.  
2. Follow the steps in 6.6 to threshold the Dark Pupil. 
3. After the pupil has been isolated, adjust the scan density to use the minimum number of dots that 

can reliably and consistently locate the pupil. Correct thresholding of the Dark Pupil is illustrated in 
Figure 10.  

4. Ask the subject to look at each of the four corners of the Stimulus window to ensure that the pupil 
remains in the search box and to ensure accurate thresholding for all potential eye movements. i.e. 
the yellow oval outlines the pupil and is fairly circular. If self- testing move the eye camera around to 
the four corners of the display to view the effects of pupil segmentation at different Position of 
Gaze.  

5. Select the Pupil-Glint Offset Adjustment icon on the EyeCamera window, illustrated in Figure 9 Use 
the mouse to drag out the offset vector from the center of the pupil to the center of the corneal 
glint.  



 
Arrington Research 

3/2/2016 
Page 36 

6. Press the button to select the glint search size adjustment mode, and then use the mouse in the 
EyeCamera window to drag out smallest rectangle that catches the glint at all possible eye positions. 
Because the glint search size moves relative to the calculated center of the pupil, the absolute 
placement of the glint search size specification rectangle with the mouse is not important, only its 
size is important. 

7. After the glint has been isolated, adjust the scan density to use the minimum number of dots that 
can reliably and consistently locate the glint. Correct thresholding of the glint is illustrated in Figure 
9 

8. Ask the subject to look at each of the four corners of the Stimulus window to ensure that the glint 
and pupil both remain in the respective search boxes and to ensure accurate thresholding for all 
potential eye movements. i.e. the yellow oval outlines the pupil and is fairly circular and the red oval 
outlines ovals (red and green for dual glints) outline the glint and is fairly circular. If self- testing 
move the eye camera around to the four corners of the display to view the effects of pupil and glint 
segmentation at different Position of Gaze.  
At any point the experimenter can toggle the image display On/Off. When Off it provides a still image 

of the eye to aid identification of successful thresholding. This is accomplished by pressing the Freeze 

Video icon button at the bottom right of the EyeCamera window. When frozen, the icon button will be 
outlined in red and a check mark appears next to the menu item. The EyeCamera window will also 
indicate "*** FROZEN ***" in the title bar.  
Scan adjustments can be locked by selecting the EyeCamera window > Lock Search Area Adjustments icon 
(padlock with hasp closed). 

6.8 Noise 

The major problem that the user will face is to increase the signal to noise ratio. In the Glint-Pupil Vector 
mode, the basic measure of signal is the length of the vector from the center of the pupil to the center 
of the glint, so there are now two sources of noise. Noise comes from many things, for example: eyelid 
droop, eye blinks, extreme GazePoint angles that produce a reflection from the less smooth sclera 
(white part of the eye) and margins where the cornean curvature shows inflection, shadows, extraneous 
specular reflections, as well as the internal electrical video noise.  

The first most obvious way to increase the signal is to increase the image size (move the camera 
closer or zoom in), so the pupil to corneal reflection difference vector appears larger in the EyeCamera 
window. The trade-off here is that smaller head movements can move the eye out of the view of the 
camera. The mapping function is calculated based on the calibration data, and it is only as good as the 
calibration. There are many sources of non-linearity. Consequently, mapping the raw eye-image-feature 
data to direction-of-gaze requires a sufficiently sophisticated non-linear mapping function. Obviously, if 
the subject is not looking at the calibration point when the data is sampled, then the calibration function 
that is calculated is not going to produce accurate GazePoint information.  

6.9 Automatic Slip Compensation 

Some hardware configurations, for example Head Mounted Displays (HMDs) can pose a problem 
when the camera position constantly slips with respect to the eye.  Automatic Slip Compensation 
combines the advantages of the larger signal space and reduced signal noise of the Pupil Location 
method, together with the translation-error robustness of the Glint-Pupil Vector method.  



 
Arrington Research 

3/2/2016 
Page 37 

Select Controls window > Eye tab > Feature Method > SlipCompensation from the pull down menu.  
Three parameters can be adjusted to specify the degree of compensation applied to the data using 

CLI commands.  Refer to 19.9 

Note: do not confuse this with Calibration Slip Correction. 

6.10  Feature Criteria 

 Pupil Aspect Criterion  6.10.1

The program can reject a dark segmented area as being the pupil based on its ability to fit a circle to that 
area. If the ratio of the minor-axis to the major-axis is less than the criterion level, then that area is 
rejected. If you are going to use this feature, then typically a criteria level of 0.6 is a good place to start. 
Enable the PenPlot window > Pupil Aspect Ratio line graph in the to graphically view the criterion level 
relative to the pupil aspect ratio data-value in real-time. Adjust the Controls window > Criteria tab > Pupil 

Aspect Criterion slider so that the threshold bar is below the data value for all potential eye movements, 
but above that for blinks. The pupil OvalFit changes color from yellow to orange when criterion is 
violated. 

The variation of aspect ratio over the range of eye movements will depend on the viewing angle of 
the camera. The eye image in Figure 9 was taken with a micro camera (arranged as in Table 19 
Schematic of the ViewPoint EyeTracker® System). The pupil will appear more oval as the angle increases 
between the optical axis of the camera and the line-of-sight of the eye.  

 Width Criteria  6.10.2

ViewPoint also provides Minimum Pupil Width and Maximum Pupil Width criteria. Enable the PenPlot 

window > Pupil Width line graph to graphically view these criteria levels relative to the pupil width data-
value in real-time. Adjust the Controls window > Criteria tab > Maximum Pupil Width slider and the Minimum 

Pupil Width slider so that the data value is between the threshold bars for all potential eye movements. 

6.11  Alternative Segmentation Methods  

Various algorithms are available for identifying the pupil and the glint (refer to section 19.8) center. 
Lighting conditions and performance considerations will determine which method is best for a particular 
job.  
The EyeCamera window > Monitor icon > Pupil Segmentation Method > … pull down menu is used to make a 
selection. 

 Ellipse  6.11.1

This fit provides a general rotated ellipse to the pupil, so that a good fit is made to oblique pupil 
images. It requires more CPU time than the Oval Fit method, but in some situations it can provide a 
more accurate calculation for the pupil center. Because there are more degrees of freedom, the ellipse 
may appear more wobbly than with the Oval Fit method, however the pupil center calculations is usually 
more accurate, because more points are used for fitting. 



 
Arrington Research 

3/2/2016 
Page 38 

 Centroid  6.11.2

Centroid means “Center of Mass”. This is a simple method that may be useful if there is difficulty 
discriminating the edge of the pupil, or if the pupil is very small.  

The pupil location is at the average position of all points above threshold, weighted according to 
how much above threshold. Points below threshold are weighted more if they are darker. This centroid 
location is used as the starting point for its additional processing by the more sophisticated methods 
discussed in the next sections. No aspect ratio information is calculated.  

 Oval Fit  6.11.3

This method scans the area around the Centroid for extreme left, right, top and bottom values that 
are used as the coordinates of an unrotated (flat) bounding rectangle. The center of this bounding 
rectangle is taken as the center of the pupil. This method is more robust than the centroid method 
alone, and it takes less CPU time than the general rotated Ellipse method discussed earlier.  

 PupilScanArea Shape Options 6.11.4

The PupilScanArea is defined by a rectangular bounding box, but by default the actual scan area is 
an ellipse that is fit to this bounding box. This becomes apparent when the threshold dots are displayed. 
The user can change the scan area for the pupil to either rectangular or elliptical using CLI commands 
but we do not recommend it, because an elliptical scan area helps eliminate dark spots at the corners of 
the rectangle, which the software may interpret as a pupil. 

 Glint Segmentation Methods 6.11.5

The previous sections have focused segmentation and identification methods for the pupil. It is also 
possible to change the default segmentation method for the glint, though it is not normally required. 
The EyeCamera window > Monitor icon > Glint Segmentation Method > … pull down menu is used to make a 
selection. 

6.11.6 Edge Trace (only on special versions) 
The pupil location is the center of the extreme values obtained during an edge trace around the 

pupil, starting from the point at 3 o'clock from the weighted centroid. This algorithm first scans 
rightward to find the right edge of the pupil. Next the algorithm traces the edge of the pupil, using the 
dark pupil threshold limit as the edge criterion. The extreme positions obtained during the edge trace 
are used to fit an oval, the center of which is taken to be the pupil location. 



 
Arrington Research 

3/2/2016 
Page 39 

Chapter 7. Binocular Option  

This section describes those features that are particular to the ViewPoint EyeTracker® binocular option. 

7.1  To switch Operating in Binocular Mode  

To switch from monocular to binocular operation, select menu item: Binocular > Binocular Mode 

(toggle checkmark).  See Figure 11 below for the binocular mode window layout. 
 

 ViewPoint Window in Binocular Mode  Figure 11.

 

 
Alternatively, use the CLI command:  Binocular_Mode  On 
This command may be placed in the Settings file startup.txt to automatically set your binocular 
preference when ViewPoint is launched. Refer to Chapter 15. 

7.2  CLI Prefix – EyeTarget Specifier 

CLI commands can be targeted to specific eyes by using the EyeTarget Prefix: EyeA: or EyeB:, with no 
spaces between, for example: EyeB:videoAutoImage ON . See section 18.15. 
 



 
Arrington Research 

3/2/2016 
Page 40 

7.3  Setup  

Binocular mode requires about twice the processing time. For optimal performance in the binocular 
mode on slower machines, follow these suggestions:  

 The video modes may be different between Eye-A and Eye-B if required.  
 Set the video modes to High Precision rather than High Speed, unless the higher speed is 

actually required.  
 When collecting data, avoid moving the mouse, especially to resize or move windows, 

which may cause video frame loss especially on slower computers.  
When Binocular Mode is selected, the EyeSpace window has an additional drop down box to specify 
which eye the calibration process is to apply to. See Figure 11. 

7.4  Storing Data  

The data file will automatically have data columns appended for binocular mode. Quality markers 
are recorded for each eye which will allows collection of data from one eye, even if the other eye data 
has been rejected for some reason. The data file record format is typically a sequence as follows:  
Tag#, EyeA_data, EyeB_data, Count, Markers  

Refer to Chapter 13 for details of data file format.  

7.5  Real-Time Display of Binocular Data  

The binocular data may be combined in a “cyclopean” average position during the display in the 
GazeSpace and Stimulus windows and in the PenPlot window:  

See menu items:  

Binocular > Show both eye positions  

 Both eye positions will be displayed as separate points in the GazeSpace and Stimulus windows.  

Binocular > Show averaged Y-Positions  

Two positions of gaze will be displayed in the GazeSpace and Stimulus windows. These will 
reflect the average of the vertical (Y) positions of both eyes.  

Binocular > Show average of Eye Positions  

One Position of Gaze will be displayed in the GazeSpace and Stimulus windows. This will take the 
average of the eye positions.  

Parallax Correction (for SceneCamera systems) 

 Uses vergence to correct for vertical Parallax errors. 
 

Note: Regions of Interest (ROI) hit lists are triggered by the (possibly smoothed & corrected) 
individual positions of gaze, but with no binocular averaging.  

Note: The Binocular averaging option only affects the GazeSpace and Stimulus window displays. 

Alternatively, use CLI: binocular_Averaging [ Off,  only_Y,  both_XY,  ParallaxCorrection ]  
This command may be placed in the Settings file startup.txt to automatically set your binocular 
preference when ViewPoint is launched. Refer to Chapter 15 



 
Arrington Research 

3/2/2016 
Page 41 

Chapter 8. Calibration 

This section describes the calibration process in more detail and also describes many of the advanced 
calibration features available to the user.  

Before calibration, the pupil (and, if being used, the corneal reflection) must have been isolated 
with appropriate threshold settings.  

ViewPoint starts up in a coarsely calibrated state that provides precise timing of raw (uncalibrated) eye 
movements. This is sufficient for many applications that can utilize relative eye movements, such as 
quadrant-wise “preference of looking” tasks. If your application requires more precise gaze point 
information, then further calibration will be required. Raw pupil and corneal reflection locations do not 
indicate where the subject’s position-of-gaze is. Calibration Stimulus Points are presented to the subject 
in the Stimulus window (GazeSpace) and corresponding eye feature locations in EyeSpace are saved as 
Calibration Data Points. 
These raw DataPoints in EyeSpace (i.e. the EyeCamera video space) must be mathematically mapped to 
the subject’s GazeSpace (i.e. the visual-stimulus space) to provide a calculated position of gaze (POG).  
Calibration related CLI are described in sections: 19.12 and 21.8. 

8.1 Calibration Carryover  

There are substantial similarities between the eyes of different people, so it is sometimes possible to 
calibrate the system to one person, who is easy to calibrate, and then obtain reasonable data using that 
calibration for another person – though you will probably at least want to do a single point Slip 
Correction (see § 8.9).  
When using the Glint-Pupil Vector method you may want to obtain separate calibrations for each 
individual, because of individual variations in corneal curvature.  

8.2 Choosing the Number of Calibration Points 

The number of calibration points is selected by the user via the pull-down menu item in the EyeSpace 
window. The number of calibration points may be set to: 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64 or 72. 
A higher number of points may help with subjects that have corneal abnormalities or difficulty 
foveating. A setting of 12 or 16 is usually quite adequate. With fewer calibration points, good calibration 
accuracy is essential for each point. When a large number of points are used, the effect of any single 
point will be less. In general try to use at least 9 points to obtain a good calibration. 

8.3 Automatic Calibration (Head Fixed) 

Calibration stimuli are presented to the subject in the Stimulus window and also indicated to the user in 
the GazeSpace window. The subject should be instructed to foveate each point in turn. The calibration 
mode is “Tunnel Motion” calibration, where shrinking motion of a rectangular frame captures the 
subject’s visual attention and smooth pursuit brings the subject’s gaze point to each of the desired 
calibration spots in turn.  

 



 
Arrington Research 

3/2/2016 
Page 42 

 Calibration Stimuli  Figure 12.
 

 
 
 

Calibration is started by pressing the Auto-Calibrate button in the EyeSpace window. If menu item: Stimuli 

> Stimulus Window Properties > AutoShow on Calibrate is also selected, then the Stimulus window will 
automatically be displayed full screen on the primary monitor. The option should be turned Off when 
assigning the Stimulus window on a secondary monitor. 
The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to the start of 
the calibration process. This can be suppressed or the display time adjusted via the Advanced section in 
the EyeSpace window. Speed of presentation of the calibration StimulusPoints can be adjusted via the 
Advanced section in the EyeSpace window.  
The automatic calibration sequence may be stopped by pressing the STOP Calibration button in the 
EyeSpace window. Pressing the ESC-key will both stop the calibration and remove the full screen display if 
it is on the primary monitor.  
For auto-calibration, it is usually preferable to randomize the presentation order of the calibration 
points, which is the default setting. With Sequential Presentation Order of calibration StimulusPoints, a 
leading source of calibration error is that the subject anticipates the presentation location of the next 
point, before the current StimulusPoint has finished. Explain to the subject that it is important to fixate 
on the calibration StimulusPoint until the point has completely disappeared. 
The calibration stimulus presentation order type may be changed. Press the Advanced button in the 
EyeSpace window for access to the controls. See section 8.12 for details on timing, presentation or, 
calibration stimulus type and color, etc. 

8.4 Assessing Calibration Success  

A quick check of calibration accuracy may be done by asking the subject to look at particular points on 
the stimulus and using the GazeSpace window to verify that the gaze point matches up with the points 
looked at.  
The arrangement of calibration DataPoints in the EyeSpace window provides a method of assessing how 
good the calibration data is.  
Successful calibration will be indicated by a relatively rectilinear and well separated configuration of 
dots. The Feature Method (selected in the Controls Window, see Figure 8) determines how these 
DataPoints are plotted. If Pupil Location is selected, then the plot shows green dots corresponding to the 
locations of the pupil at the time of calibration point capture. The dots are joined by yellow lines that 
indicate the spatial relationship between the dots. If Glint-Pupil Vector is selected, the plot shows blue 



 
Arrington Research 

3/2/2016 
Page 43 

dots corresponding to the locations of the pupil at the time of calibration point capture, but now they 
are shifted so that they are all relative to the corneal glint (red dot) that is plotted at the center of the 
DataPoint chart. The dots are joined by yellow lines that indicate the calibration index number (which is 
the order in which they are presented if sequential presentation order is selected). 

 

 EyeSpace Window Showing Successful Calibration Figure 13.

 
 

The top part of the window shows a graphics well that represents the coordinate space of the 
EyeCamera window. In monocular mode the graphics well is 320x240, in binocular mode two smaller 
graphics eslls are shown, one for each eye. The center of the EyeCamera window is indicated in the 
graphics well by the intersection of the X and Y axes lines.  
If Pupil Location or Glint Location modes are selected, a semi-transparent eye-colored circle shows the 
current pupil location, or the current glint location, respectively. In Glint-Pupil Vector mode the colored 
circle shows the vector difference between the pupil and glint locations, with the glint end of the vector 
fixed at the red dot.  
For ease of DataPoint viewing, the calibration DataPoints and real-time feature points (pupil and / or 
glint) can be zoomed in or out using the Zoom slider, and can easily be moved by dragging with the right 
mouse button. The Re-center button repositions the DataPoints in the center of the graphics well. 

8.5 CalibrationImage 

The EyeSpace window > Images button will show/hide the CalibrationImage window that shows the picture 
of the eye at the time when the calibration point was snapped, for each calibration stimulus point. This 
visually shows if the subject blinked during calibration, if glare is occluding the pupil, if a glint was lost, 
etc. This is very useful for troubleshooting. 
This window initially shows a matrix of eye camera images that corresponds to the matrix of 
calibrationStimulusPoints. Double-clicking a particular EyeImage will zoom that EyeImage and also select 
(and highlight) that CalibrationDataPoint in the EyeSpace window. Double clicking the zoomed image 
will go back to the matrix view. Alternately, selecting a CalibrationStimulusPoint in the EyeSpace window 
will zoom to that EyeImage in the CalibrationImage window. If an EyeImage is already zoomed, then 
moving the calibration "DataPoint" slider will show the correct zoomed EyeImage. 

Succesful 9 point Pupil-Glint vector calibration 
The blue dots represent the position of the pupil 
in relation to the position of the glint (red dot). 



 
Arrington Research 

3/2/2016 
Page 44 

The CalibrationImage matrix is saved in a picture file in the ViewPoint/Calibration/ folder. In 
binocular mode a separate picture matrix is saved for each eye, e.g.: 

 
ViewPoint/Calibration/vpx_EyeACalibrationImage_LastRun.bmp 

ViewPoint/Calibration/vpx_EyeBCalibrationImage_LastRun.bmp 

 

 CalibrationImage Window Showing Eye Snapshots. Figure 14.

 

The Calibration Eye Images in these files are written over each time a new calibration is performed 
including a Re-Present. The user may however make a copy of the file to save a particular set. 

 

8.6 Binocular Calibration 

In binocular mode a pull-down menu at the bottom of the EyeSpace window allows calibration 
actions may be performed on either both eyes at the same time, or on individual eyes. This is of 
particular use when you need to Re-present or Omit a point to only one eye. 

8.7 Omitting Individual Calibration Points 

 Automatic Omitting 8.7.1

During automatic calibration, ViewPoint automatically omits calibration DataPoints that have bad data 
quality codes.  ViewPoint removes as many bad data quality calibration DataPoints as possible, until 
the minimum calibration DataPoints required is reached.  Any automatically omitted calibration 
DataPoints can be re-presented or re-instated at anytime. 



 
Arrington Research 

3/2/2016 
Page 45 

 Manual Omitting 8.7.2

The EyeSpace window > Omit button in the will allow the user to omit an individual calibration DataPoint 
from the mapping calculations. This may be required if for some reason an individual calibration point is 
far out of the rectilinear distribution and re-present is not successful. Use the DataPoint slider or mouse 
click to select the required DataPoint. Pressing the EyeSpace window > Reinstate button reinstates the 
omitted point. When in binocular mode, calibration points can be omitted for either or both eyes. 

8.8 Re-presenting Individual Calibration DataPoints  

The DataPoint slider allows the user to select individual (e.g., stray) calibration points to be recalibrated. 
The active DataPoint is highlighted in the graphics well. DataPoints can also be selected by left clicking 
the mouse. To re-present the selected (stray) calibration point, press the EyeSpace window > Re-present 

button.  
The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to the 
location of the calibration point. This can be suppressed or the display time lengthened via the 
Advanced section in the EyeSpace window. 

8.9 Slip Correction  

During data collection, the subject may move in the X and Y planes such that the measured Position of 
Gaze no longer corresponds to actual Position of Gaze. This type of problem can usually be corrected 
easily by translating (shifting) the calibration data set. First be sure to select (click with the mouse) a 
good calibration point near the center of the display. The EyeSpace window > Slip-Correction button in the 
will re-present the currently selected calibration point to the subject and automatically adjust the 
remaining points to compensate for the measured slip in the (x,y) plane.  
The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to the 
location of the calibration point. This can be suppressed or the display time lengthened via the 
Advanced section in the EyeSpace window or by using Settings files. Refer to section 16.3. 
Slip-Correction is generally not required when using the Pupil-Glint Vector Difference method; it is most 
useful when using the pupil-only or glint-only methods.  

Slip-Correction is a different from Slip-Compensation feature method described in section 6.9. 

8.10  Gaze Nudge 

Gaze Nudge adds an (x,y) nudge vector to the calculated position of gaze (POG) so it appears at the 
correct location. In non-averaged binocular mode separate nudge vectors are applied to the POG of 
each eye.  Gaze Nudge is very similar to Slip Correction except that the correction for Slip Correction is 
done in the EyeSpace, which changes the mapping function, and the correction for Gaze Nudge is done 
in the GazeSpace by simply applying the Gaze Nudge offset. 
Gaze Nudge appears in all the Corrected data throughout ViewPoint.  This includes, but is not limited 
to, the PenPlots, the DataFile, and the DLL access functions.  Also, when the Gaze Nudge is modified 
during a recording, its new values are interleaved between data records,  
 e.g.  eyeA:gazeNudge 0.35 0.16.  
ROI calculations are performed after nudging vectors and averaging is applied, so what you see is what 
you get. 



 
Arrington Research 

3/2/2016 
Page 46 

 

 Gaze Nudge Figure 15.

 

 

There are two CLI commands: GazeNudge  xPos  yPos and GazeNudgeInc  xInc  yInc, see 19.12.20 for 
details. 
The nudge is applied only to the Corrected data; see section 13.2.1, Unprocessed & Corrected Data. 

8.11  Dominant Eye  

With a monocular eye tracker, if the subject is known to have a dominant eye, a better calibration is 
obtained if this dominant eye is used. 

8.12  Advanced Calibration Controls 

The Advanced Calibration window allows the user to customize many calibration features along with 
fine tuning the manual calibration settings.  You can launch the Advanced Calibration window, shown 
in Figure 16, by clicking the EyeSpace window > Advanced button. 



 
Arrington Research 

3/2/2016 
Page 47 

 Advanced Calibration Figure 16.

 
 

 Calibration Stimulus & Background Color 8.12.1

The user can change the default color settings of the calibration stimulus rectangles and the background 
using the [ Set Stimulus Color ] and the [ Set Background Color ] buttons.  

 Timing & Warning 8.12.2

The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to the 
location of the calibration point. This can be suppressed or the display time lengthened via the Warning 

slider or CLI: calibration_WarningTime <value>. 
The Duration slider or CLI: calibration_StimulusDiration <value> specifies the approximate duration in 
milliseconds of each of the concentric contracting “tunnel motion” calibration stimulus rectangles.  
CLI: calibration_ISI <value> specifies the inter-stimulus interval between calibration points. 

 Presentation Order 8.12.3

The Presentation Order pull-down menu and CLI calibration_PresentationOrder allow the user to present the 
calibration StimulusPoints in one of three ordering modes. The default presentation mode is Random. 

 Sequential: Calibration stimulus rectangles are presented from the top left hand corner of 
the screen to the bottom right hand corner of the screen, one column at a time. 

 Random: Calibration stimulus rectangles are presented in random order. The series is re-
randomized every time the set finishes, so that there is a new random order for the next 
loop. 



 
Arrington Research 

3/2/2016 
Page 48 

 Custom: Using CLI commands with calibration_CustomOrderList, the user can specify the 
presentation order of the calibration stimulus rectangles. See sections 19.12.5. 

 Stimulus-Point Locations 8.12.4

Normally for a HeadFixed system the locations of the calibration stimulus points are automatically 
positioned such that they are evenly spaced within the calibration region. Sometimes because of 
occluders (things that get in the way) or other special situations these need to be moved. Sometimes 
they need to be positioned based upon the content. The Point Locations pull-down menu and CLI 
calibration_PointLocationMethod allow users to specify how the locations of the Calibration Stimulus 
Points will be determined: 

 Automatic :  HeadFixed – creates an evenly spaced grid within the Calibration Region. 
   Custom :  HeadFixed – the user specifies the locations of the calibration StimulusPoints using 

CLI command calibration_CustomPoint for each point; these are typically listed in a Settings file. 
See example in section 8.12.4.2. 

   OnContent : This allows the user to specify the position of custom calibration StimulusPoints at 
locations in the SceneCamera (GazeSpace) window based on the video content (e.g. a finger, a 
cardboard plaque with calibration dots painted on it etc.) When in this mode, a right mouse click 
in the GazeSpace window does two things: 

(a) Sets Custom Calibration StimulusPoint at the point the user clicks in the GazeSpace 
window, on scene video content. Saving a Settings file will save these interactively specified 
Custom points, so they can be loaded again.  
(b) Sets calibration DataPoint immediately without showing a calibration Stimulus Point, i.e. 
in snap fashion. 

 
Side effects of these changes are listed in section 19.12.10.



 
Arrington Research 

3/2/2016 
Page 49 

8.12.4.1 Custom Calibration Point Positions 

ViewPoint allows the user to specify the locations of the calibration StimulusPoints. This can be very 
useful if you need to avoid certain visual obstacles (occluders).  

You must set calibration_PointLocationMethod  Custom  before loading custom calibration Stimulus 
Points; otherwise the locations will not persist. 

The nearest-neighbor grid-lines in the EyeSpace are only useful if the pattern of StimulusPoints is in a 
rectilinear grid. The nearest-neighbor grid-lines are not automatically drawn when this option is used, 
because the points could be in any configuration. The drawing of these lines can be toggled on/off with 
CLI calibration_ShowEyeSpaceGrid <bool>. See section 19.12.13. 
The calibration point index is in column-major order, which means that the points run along the columns 
before going to the next row.  

8.12.4.2 Partial Binocular Overlap 

Calibration can be performed on Partial Binocular Overlap (PBO) Head Mounted Display (HMD) systems 
by specifying different sets of custom calibration points for each of the two eyes. See section 5.5.1.1 for 
more discussion and section 19.12.11 for more detailed example code. See also section 12.4 about 
Stereo Display of stimuli.  Note the EyeA: and EyeB: prefix in the following example:   
 
stereoDisplay ON 

calibration_PointLocationMethod Custom 

EyeA:calibration_CustomPoint  1  0.1  0.10 

EyeB:calibration_CustomPoint  1  0.1  0.15 

etc. 

 Flipping the Initial Calibration 8.12.5

Check the Init: [x] Horizontal Flip and the [x] Vertical Flip check boxes as appropriate when using mirrors or 
with rotated cameras so the eye movement directions are correct in the initial calibration mapping.  
These specify whether the initial calibration should be created as mirror reflections of the defaults. 
Setting these correctly is especially important when using Manual Calibration.  These flip options 
persist during Manual Calibration adjustments. 
Below are the CLI commands for these features. 
 
calibration_InitWithHorizontalFlip <bool> 
calibration_InitWithVerticalFlip <bool> 

  Init with Horizontal & Vertical Flip options Table 6.
No Flip Horizontal Flip Vertical Flip Horizontal & Vertical Flip 

10   7   4   1 
11   8   5   2 
12   9   6   3 

1   4   7   10 
2   5   8   11 
3   6   9   12 

12   9   6   3 
11   8   5   2 
10   7   4   1 

3   7   9   12 
2   5   8   11 
1   4   7   10 

 

The calibration flipping is different from the option of mirroring the EyeCamera image, which is 
available on some products, see CLI: videoMirror. 



 
Arrington Research 

3/2/2016 
Page 50 

 Adjusting the Calibration Area 8.12.6

The user may want to adjust the size and position of the area within which the calibration 
StimulusPoints are presented. This is especially useful when part of the display screen is occluded, as in 
fMRI environments.  This opens the Controls window > Regions tab. Use the left mouse button in the 
GazeSpace window to drag out the required size and position of the calibration area. The size and 
position coordinates are displayed in the Regions tab and in the GazeSpace window. The Revert button 
will undo the last change and the Default button will return the calibration areas size to the default 
setting. 

 Snap and Increment Calibration Modes 8.12.7

If you prefer to calibrate points individually, then the user can select the [x] Snap Presentation mode 
checkbox. In this mode the currently selected calibration DataPoint is active and the Re-present button 
will immediately perform the calibration based on the eye position at the moment the button is pushed. 
There is no warning and no calibration StimulusPoint presented. 
When in this mode the behavior of the Re-Present and the Slip-Correction buttons are changed as 
described and is indicated by the appearance of an asterisk ( * ) on these buttons.  
When operating in this mode the user can choose whether to automatically advance to the next 
calibration DataPoint by selecting the Auto-Increment button. This mode is indicated by the appearance 
of a double plus icon ( ++ ) on the Re-Present and the Slip-Correction buttons. If Auto-Increment is not 
selected then the selected calibration point will not change. The successor number DataPoint is 
determined by the Presentation Order mode selected. 

 Manual Calibration 8.12.8

The Advanced Calibration window now includes GUI controls for manual calibration. Manual calibration is 
particularly useful for non-verbal subjects. The buttons and sliders for doing this are in the Advanced 

Calibration window, at the bottom in the EyeSpace Manual Calibration group box; See Figure 16. 
This is done in three steps. 

 Set the AspectRatio of the Stimulus window, if it is different than the default aspect ratio of the 
EyeSpace (4:3 = 1.33), by pressing the Aspect Ratio: n.n Set... button. 

 Set the Center point when you believe the subject is looking at the center of the screen, by 
pressing the Center A (Center B, or Center Both for binocular systems) button.  

 The user can change the amount of EyeSpace movement that corresponds to GazeSpace 
movement by adjusting the Gain A (and Gain B for binocular systems) slider. 

Adjusting the gain value modifies the distribution of the EyeSpace calibration data points, which 
determines the mapping from EyeSpace to GazeSpace. The calibration data points can be saved and 
reloaded as usual, thus saving and reloading the manual calibration. 
In addition, the Init: [x] Horizontal Flip [x] Vertical Flip check boxes allow the user to specify whether the 
initial calibration should be created as mirror reflections of the defaults. This only effects the initial ideal 
calibration data; it does not effect subsequent calibration on a subject. 
Below are the available CLI commands for these features. 
calibration_InitWithHorizontalFlip <bool> 
calibration_InitWithVerticalFlip <bool> 
manualCalibration_AspectRatio <float>  
eyeA:manualcalibration_Center 
eyeB:manualcalibration_Center 

both:manualcalibration_Center 
eyeA:manualCalibration_Gain <float> 
eyeB:manualCalibration_Gain <float> 
both:manualCalibration_Gain <float> 



 
Arrington Research 

3/2/2016 
Page 51 

  Calibration Points in a Settings file 8.12.9

Both calibration StimulusPoints and calibration DataPoints for each eye are saved to Settings files.   
The columns are:  
 fm: the FeatureMethod 0=PupilOnly, 10:GlintOnly, 20=PupilGlintVectorDifference. 
 ix: the calibration point number from 0 to (n-1). 
 XeyeDat and YeyeDat: the calibration DataPoints. 
 XstimPt and YstimPt: the calibration StimulusPoints. 
 
The following is taken from a Settings file: 
 
EyeA:// CALIBRATION DATA (UNIFIED) ------------------------------------- 

EyeA://    fm=0:pupilOnly, fm=10:GlintOnly, fm=20:PupilGlintVectorDifference 

EyeA://------- fm ix XeyeDat YeyeDat XstimPt YstimPt Omit 

EyeA:CalibData 0 0 0.90000 0.10000 0.10000 0.10000 0 

EyeA:CalibData 0 1 0.90000 0.50000 0.10000 0.50000 0 

EyeA:CalibData 0 2 0.90000 0.90000 0.10000 0.90000 0 

EyeA:CalibData 0 3 0.50000 0.10000 0.50000 0.10000 0 

EyeA:CalibData 0 4 0.50000 0.50000 0.50000 0.50000 0 

EyeA:CalibData 0 5 0.50000 0.90000 0.50000 0.90000 0 

EyeA:CalibData 0 6 0.10000 0.10000 0.90000 0.10000 0 

EyeA:CalibData 0 7 0.10000 0.50000 0.90000 0.50000 0 

EyeA:CalibData 0 8 0.10000 0.90000 0.90000 0.90000 0 

EyeA:CalibData 10 0 0.90000 0.10000 0.10000 0.10000 0 

EyeA:CalibData 10 1 0.90000 0.50000 0.10000 0.50000 0 

EyeA:CalibData 10 2 0.90000 0.90000 0.10000 0.90000 0 

EyeA:CalibData 10 3 0.50000 0.10000 0.50000 0.10000 0 

EyeA:CalibData 10 4 0.50000 0.50000 0.50000 0.50000 0 

EyeA:CalibData 10 5 0.50000 0.90000 0.50000 0.90000 0 

EyeA:CalibData 10 6 0.10000 0.10000 0.90000 0.10000 0 

EyeA:CalibData 10 7 0.10000 0.50000 0.90000 0.50000 0 

EyeA:CalibData 10 8 0.10000 0.90000 0.90000 0.90000 0 

EyeA:CalibData 20 0 0.90000 0.10000 0.10000 0.10000 0 

EyeA:CalibData 20 1 0.90000 0.50000 0.10000 0.50000 0 

EyeA:CalibData 20 2 0.90000 0.90000 0.10000 0.90000 0 

EyeA:CalibData 20 3 0.50000 0.10000 0.50000 0.10000 0 

EyeA:CalibData 20 4 0.50000 0.50000 0.50000 0.50000 0 

EyeA:CalibData 20 5 0.50000 0.90000 0.50000 0.90000 0 

EyeA:CalibData 20 6 0.10000 0.10000 0.90000 0.10000 0 

EyeA:CalibData 20 7 0.10000 0.50000 0.90000 0.50000 0 

EyeA:CalibData 20 8 0.10000 0.90000 0.90000 0.90000 0 

// --------------------------------------------------------------- 

 

The locations are in normalized coordinates, so for example in a window 800 x 600, the (x,y) locations 
(0.1,0.1) are at ((0.1*800), (0.1*600)) that is (80,60). 
 



 
Arrington Research 

3/2/2016 
Page 52 

Chapter 9. Corrections Based on Measurements 

The previous chapter described mapping to the calculated Position of Gaze (POG).  This chapter 
describes additional corrections that can be applied based on geometric measurements. 

9.1 Obtaining POG in Degrees: 2D Geometry 

By default, the calculated GazePoint is given in normalize window coordinates (that is: (0.0,0.0) at the 
top left, (0.5,0.5) in the center, and (1.0,1.0) at the bottom right). These values are always correct, 
regardless of the display resolution settings, and regardless of whether or not the user has correctly 
measured and entered the geometry distances.  
To obtain the GazePoint in degrees, you will need to make three measurements and enter these 
measured values by adjusting the three sliders in the Geometry window > 2D tab. One measure will be of 
the viewing distance that is the distance from the eye to the display; the other two measures will be of 
horizontal and vertical MeasurementLines.  Don't worry, ViewPoint does the trigonometry for you! 
The 2D Geometry is now modal, that is, the values that appear depend upon which mode you are in.  
The mode is displayed as the Geometry window > 2D tab > ActiveGeometry: value. The ActiveGeometry (mode) 
is set according to which Stimuli > View Source is selected (ViewPoint Stimulus Window, HeadMounted 

SceneCamera, or Interactive Computer Display) and which display device is selected (Monitor 1, Monitor 2, 
etc.) or if the Stimulus window is not full screen. 

 
 



 
Arrington Research 

3/2/2016 
Page 53 

 Geometry Window  Figure 17.

 

 
 

 

How and where you make the measurements depends on what type of system you are using, as 
explained in the following sections: 

 

 Stimulus Window or InterActive Display -- HeadFixed (non-HMD)  9.1.1

First show the Stimulus window as it will be used (e.g. full screen on a single monitor), then raise the 
Geometry window > 2D tab so it appears over the Stimulus window. In this mode, MeasurementLines are 
drawn in the Stimulus window whenever the 2D panel is active.  
Using a tape measure, determine the length of each of the MeasurementLines including the red border 
and also the distance from the eye to the center of the Stimulus window, at the intersection point of the 
MeasurementLines. Enter these measured values by adjusting the three sliders in the Geometry window > 

2D tab.  

 HeadMounted SceneCamera 9.1.2

When using the SceneCamera you will be looking at the video in the GazeSpace window (rather than the 
Stimulus window). While the video is being displayed, raise the Geometry window > 2D tab. In this mode, 



 
Arrington Research 

3/2/2016 
Page 54 

MeasurementLines are drawn in the GazeSpace window whenever the 2D panel is active. It is best to make 
the measures relative to a wall or a vertical board. This can be done with a single person using a 
comfortable distance (within arm’s reach) (see section 9.1.4, below, regarding distances). 
Using a tape measure, first measure the distance from the eye (SceneCamera) to the wall, then keeping 
this distance constant, extend the tape measure against the wall so that it extends along the length of 
the MeasurementLines, as viewed in the GazeSpace window -- enter these measured values by adjusting 
the three sliders in the Geometry window > 2D tab. Refer to 19.4 

 

 Read the Measuring Tape in GazeSpace/SceneCamera content Figure 18.
 

 
 

 HeadMounted Display 9.1.3

Because taking useful measurements inside the HMD is extremely difficult, we will instead take the 
measurements from after-images created by the MeasurementLines shown in Stimulus window in the 
HMD. You will need to get the following things ready, before you begin: 

(a) One clean white sheet of paper with a fixation dot in the middle. 
(b) A pencil  
(c) A short ruler (e.g. 7")  
 

Read through and understand these instructions before starting the measurement procedure 

1. Mark the center of the sheet of paper with a dark dot suitable for fixation (e.g. about 2.5 
mm).  

2. Hold the ruler upright (vertically) against the paper, such that the forehead can rest against 
the top of the ruler, keeping the head a constant distance from the paper.  



 
Arrington Research 

3/2/2016 
Page 55 

3. Now, show the Stimulus window in the HMD, then raise the Geometry window > 2D tab, which 
will display MeasurementLines in the Stimulus window shown in the HMD. 

4. Stare exactly at the center i.e., at the intersection of these lines for at least about 15 
seconds, without moving the eyes.  

5. As quickly as possible, (a) remove the HMD, (b) position the head at the know distance from 
the paper using the ruler, (c) stare exactly at the fixation spot on the paper and mark the 
ends of the after-image lines with the pencil.  

6. After marking the ends, using a ruler to measure the lengths of the after-image lines. Enter 
these measured values by adjusting the three sliders in the Geometry window > 2D tab.  

 Notes on Measurement Lines 9.1.4

For the Stimulus window (9.1.1) and the SceneCamera (9.1.2) we do not directly measure the display 
hardware, because the display driver could have been set to shift part of the image off the screen, or it 
could have been shrunk or expanded to better fit a particular monitor. Rather, we measure the vertical 
and horizontal MeasurementLines that cover about 80% of the window.  
For the SceneCamera (9.1.2) and HMD (9.1.3) the viewing distance does not matter, because the lengths 
of the MeasurementLines vary directly with changes in the viewing distance -- the angles will be the 
same. 

 

The units of measurement are arbitrary, but they must be consistent, e.g. all measurements in 
millimeters, all measurements in inches, etc...  

The Geometry window also displays various numerical calculations that may be useful.  
After adjustments have been entered, the measurements should be saved by pressing the Store button. 
Subsequent runs of ViewPoint will maintain the stored settings. 
The Active Geometry text shows which set of geometry values are being used. Settings are stored 
separately for different modes of operation, for example when the View Source is changed between 
SceneCamera and Stimulus window. Changing modes automatically loads in the stored values for that 
mode.  

 

 Geometry Grid 9.1.5

After the geometry has been measured and entered (see section 9.1.1), the GeometryGrid lines will be 
accurately spaced to show the viewing angle in degrees of visual arc.  
The GeometryGrid can help the user understand the sizes of and the distances between visual stimuli 
presented in the Stimulus window; it can also be useful for assessing the accuracy of the calibration that 
was obtained 
This GeometryGrid display shows light blue vertical and horizontal lines and circles radiating from the 
center, separated by a specifiable number of degrees of visual arc. The user can specify the spacing of 
two sets of lines, minor (thin) lines and major (thicker) lines. 
These values can also be set using CLI commands.  See section 19.4.1. 
The geometry gridlines can be displayed on the Stimulus window and on the GazeSpace window without 
the Geometry Window being active, by using the check boxes on the Controls window > Display tab. See 
also 19.4.1. 

 



 
Arrington Research 

3/2/2016 
Page 56 

For Stimulus window (9.1.1) and HMD (9.1.3) modes, the grid lines are accurate only on the 
Stimulus window and only at the specified viewing distance; the grid lines shown in the 
GazeSpace window are scaled and are typically a miniature view of the Stimulus window.  

 

 Geometry Window  Figure 19.

  

 
You can specify the minor and major axis separation displayed using the CLI: gridSpacing floatMinor 

floatMajor 

e.g.:   gridSpacing 2.5 10 // minor axes every 2.5 degrees, major axes every 10 degrees 

 

9.2 Parallax Correction for Binocular SceneCamera systems 

 

This section is only applicable to Binocular SceneCamera systems. 

 
When the optical axis of the SceneCamera is different from the optical axis of the Eyeball, a parallax 
error will occur in the calculated Position of Gaze (POG) when the subject is looking at points in a plane 
that is closer or farther away from the plane of calibration.  The binocular SceneCamera system 
provides a built-in default parallax correction and also the ability to fine tune the correction. 
The parallax correction value is a linear function of the binocular vergence angle. The slope of the line 
depends on the inter-pupillary distance (IPD) of the eyes and the distance of the SceneCamera above or 
below the line between the two eyes. In general, the default value offers substantial correction value, 
based on the typical camera location on the ViewPoint EyeTracker ® EyeFrame ™ and typical IPDs . 
To show the Position of Gaze with the Parallax correction, select menu item: Binocular > Show average 

with parallax correction.  Parallax Correction will not be applied to the data unless both Binocular mode 
and SceneCamera mode is active, and Parallax Correction is selected. 



 
Arrington Research 

3/2/2016 
Page 57 

If you wish to fine tune this function, there are two ways to determine the appropriate parallax 
correction: (a) manual experimentation, (b) collecting data and fitting a line to it.  

CRITICAL: Always do an EyeSpace Slip-Correction before calibrating the parallax correction. 

After performing the binocular SceneCamera calibration, bring up the Geometry window > Parallax tab as 
in Figure 20 below. 

 Geometry window > Parallax tab > Slope slider Figure 20.

 

 Manual Parallax Adjustment 9.2.1

Use the Slope slider to adjust the magnitude of the Parallax Correction function, as the subject looks 
near and far, until a setting is found that substantially eliminates the error between the supposed gaze 
point and the calculated gaze point.  
The default slope applied is 0.82, if you need to change this default use the following CLI command: 

parallaxCorrection_Slope  float   // where float is in range -2.0 – + 2.0 

 Parallax Correction from Data  9.2.2

Here’s how to perform the calibration: 
1. Place the target in the bulls eye located in the Gaze Space window as see in Figure 21. 
2. Ask the subject to fixate on the actual target. For example, in the image in Figure 21 below, if 

the subject was ask to look at the tip of the finger.  
3. Once the subject is fixating on the target, press the [ Snap ] button. You should see a new red 

data point appear in the plot. The software records the difference between the calculated 
Position of Gaze (POG) and the target to get the error term, the current vergence angle is also 
recorded. 

4. Repeat steps 1 - 3 for a minimum of 3 different distances, E.g. 10cm, 20cm, 1m, 2m, 3m.  A 
minimum of 3 points are required before you will be allowed to fit a line to the data; in fact you 
should usually obtain at least 6 - 9 for a more accurate calibration. 



 
Arrington Research 

3/2/2016 
Page 58 

If at anytime you adjust the slope using the slider, you can revert back to the collected data points by 
pressing the [ Use Data Fit ] button. 
 

parallaxCorrection_Snap   ==  [ Snap ] button 

parallaxCorrection_UseDataFit ==  [ Use Data Fit ] button  

parallaxCorrection_InitData  ==  [ Clear Data ] button  

parallaxCorrection_UndoLastSnap  ==  [ Undo Last Snap ] button 

In previous versions the user was required to mouse click on the target location in the GazeSpace / 
SceneCamera window. 
The parameter Parallax is no longer valid for GazeSpace_MouseAction, instead use  

GazeSpace_MouseAction Simulation;  simulationMode Pattern; use GazeSpace_MouseAction None;   

To facilitate transition; this command will now do the same as CLI geometryTab Parallax. 
 

 

 Parallax Correction from Data Figure 21.

 
 

9.3 Pupil Diameter 

 Raw Pupil Size 9.3.1

The value of PupilWidth is width of the ellipse that is fit to the pupil, normalized with respect to the 
width of the EyeCamera window. Using normalized values allows the user to switch between video 
modes (e.g. 320x240, or 640x480) without affecting the data. Consequently, if the pupil ellipse 
horizontally spans the full width of the window, the width value would be 1.0.  



 
Arrington Research 

3/2/2016 
Page 59 

The Ellipse method fits a rotated ellipse to the pupil; with this method the PupilWidth is the length of 
the major axis (the longest axis). Note that the minor axis will become small as the eyeball rotates away 
from the optical axis of the camera, as a cosine function of rotation, becoming zero at 90 degrees. The 
major axis does not suffer from this problem. Note also that the rotated ellipse allows a diagonal fit to 
the full size of the EyeCamera window, which allows the PupilWidth value to exceed 1.0. 
The older OvalFit method fits an unrotated ellipse to the pupil; with this method the PupilWidth is the 
horizontal width of the pupil. 
Obviously the actual pupil diameter will depend on the camera placement relative to the eye. Figure 22 
Artificial Pupil Diameters contains a set of black disks of specific diameters that can be used as “artificial 
pupils” for determining what actual pupil diameter (in inches or millimeters) the diameter in pixels 
corresponds to. Pupil diameters usually range between 2mm and 8mm.  

 

 Artificial Pupil Diameters  Figure 22.
 

1/8” 

 

3/16” 

 

1/4” 

 

5/16” 

 

3/8” 

 

 

 

 

2 mm 

 

3 mm 

 

4 mm 

 

5 mm 

 

6 mm 

 

7 mm 

 

 

8 mm 

 

 

 
 

 Calculated Pupil Diameter 9.3.2

Without pupil diameter calibration, the values provided by ViewPoint are normalized with respect to the 
horizontal size of the EyeCamera window. To obtain actual values in millimeters, the user must calibrate; 
the calibration provides a scale factor (for each eye) from the normalized coordinates to the diameter in 
millimeters. 
Advantages 

 Easy GUI calibration 

 Real-time diameter in millimeters 

 DataFile contains calibrated pupil diameter in mm as well as raw data 

 Calculations always uses major axis of ellipse 
Procedure 

1. Print out a Artificial Pupil template, as found infrom Figure 22. 
2. Measure it to verify that it was printed at the expected size. 
3. In ViewPoint open the Geometry window by pressing “Ctrl + G”. 
4. Choose an Artificial Pupil size and select the corresponding Pupil Sample Diameter in mm, from 

the pull-down menu combo box. 
5. Place the Artificial Pupil template in front of the EyeCamera at the distance of the eye’s pupil. 
6. Verify that ViewPoint has obtained a good elliptical fit to the Artificial Pupil. 
7. Press the [ Set EyeA ], or [ Set EyeB ], buttons, as appropriate. 
8. Press the [ Store ] button to save the results in the Preferences file. 



 
Arrington Research 

3/2/2016 
Page 60 

  
 

 Pupil Calibration Figure 23.

 

This pupil diameter data in mm is available in real-time in the PenPlot window > Pupil Diameter (mm) and 
via the SDK command: VPX_GetPupilDiameter2( EYE_A, &mmPD ); 
ViewPoint will insert the Pupil Scale Factor value into the top material of the DataFile and record the pupil 
diameter in columns APD/BPD if the user has calibrated and stored the pupil diameter. It is stored in 
Settings files as CLI: EyeA:pupilScaleFactor floatValue. 
 

9.4 Inter-Pupillary Distance (IPD) 

CLI: ipdMeasure millimeters  

Accurate calcuation of 3D GazePoint and 3D Vergence calculations require accurate ipdMeasure, 
geoHorizontalMeasure, geoVerticalMeasure and geoViewingDistance measurements be set. 
 
Note that ViewPoint assumes that the vertical eyeball position is at the vertical center of the Stimulus or 
SceneCamera window. For more flexability, use 3DViewPoint or 3DWorkSpace products.  

9.5 Pupil Aspect  

Blinks can be detected by monitoring the pupil aspect ratio. This is a dimensionless value, where 1.0 
indicates a perfect circle.  

 



 
Arrington Research 

3/2/2016 
Page 61 

Chapter 10.  Cursor Control - EyeMouse 

The CursorControl feature allows the subject to move a cursor with their eyes. This is sometimes called an 
EyeMouse. When this feature is active, the cursor is automatically moved to the the calculated Position 
of Gaze. It only works properly with (a) head fixed hardware (e.g., the Headlock ™) or (b) head mounted 
display (HMD) hardware. It does not work with the mobile SceneCamera systems.  
Selecting menu item: Interface > CursorControl > GazeCursor will cause a transparent disk (the cursor) to 
move over the computer displays wherever the subject is looking.  

Hint: Increasing smoothing will substantially increase the usability of CursorControl. 

Selecting menu item: Interface > CursorControl > Fixation Clicks Buttons will cause a mouse click event to be 
issued at the fixation location whenever the fixation duration exceeds a pre-set dwell time. The Controls 

window > Criteria tab > MouseClick DwellTime slider specifies this fixation time in seconds. The mouse click 
event can be used to press buttons, raise windows, adjust sliders, etc. 
The green transparent disk (the GazeCursor) is surrounded by two red circles; one red circle stays at the 
perimeter of of disk, while the other red circle shrinks toward the center of the disk while the subject is 
fixating. The mouse click event is issued when the shrinking red circle reaches the center of the disk. 
This provides good visual feedback, so the subject can control his fixation and can avert his eyes to avoid 
an unwanted mouse click. See Figure 24.  
 

 GazeCursor - EyeMouse Figure 24.

 

 
Selecting: Interface > CursorControl > Eye Moves Mouse causes the actual computer pointer to move. 
CLI commands are described in section 19.22 and summarized here below. 
 

Interface > CursorControl > GazeCursor gazeCursor_Used YES;  gazeCursor_transparency 127 

Interface > CursorControl > Eye Moves Mouse cursor_Control ON  // the computer pointer 

Interface > CursorControl > Fixation Clicks Buttons cursor_DwellClick ON ;  cursor_DwellSeconds 3.5 

Interface > CursorControl > Blinks Click Buttons cursor_BlinkClick ON 



 
Arrington Research 

3/2/2016 
Page 62 

Chapter 11. Ocular Torsion  

11.1  Introduction to Torsion  

Ocular Torsion is the rotation of the eye ball about the line-of-sight, i.e. rotation about the z-axis. 
ViewPoint measures ocular torsion by determining the rotation of the iris striation patterns. A 
representative striation pattern sample is stored as the template (presumably taken when the eye was at 
zero degrees torsion). Subsequent samples are compared against the template to determine how much 
rotation has occurred. Note that there is no absolute position that is clearly zero degrees, however a 
mean center position can be approximated by looking at the range of movement in the data. 
To open the Torsion window Select: EyeCamera window > Monitor Icon > Torsion. The Torsion window is 
shown in Figure 25, below. The Torsion window contains three graphics wells and various controls.  
The line graph in the top, Correlation, graphics well in the Torsion window is the most important to 
monitor. The goal is to get a single hump that touches the top; this is the autocorrelation maximum and 
is the calculated amount of torsion. Normally the line is green, but it turns red when a 
Torsion (deg): Range Error occurs. A range error occurs is when the calculated torsion angle is outside the 
specified sampling range. Autocorrelation is a computationally expensive process and there is a tradeoff 
between resolution and range. It should not be necessary, but the resolution and range can be modified 
using CLI commands, see section 19.21. 
Sampling begins at the most counter-clockwise point on the arc (these points will be at the left on the 
plots in the Torsion window graphics wells) and then proceeds clockwise. If you hit a glint it will usually 
show as a spike in the middle graphics well that shows the Current sample. 
To start torsion measurement, press the Start button. When torsion is being calculated, the EyeCamera 
window will contain additional overlay graphics that indicate the arc along which the iris striations are 
sampled. This SamplingArc (red overlay graphics) is shown in Figure 26 below. 

 



 
Arrington Research 

3/2/2016 
Page 63 

 Torsion Window Figure 25.

 

 

 

 EyeCamera window with Torsion ON  Figure 26.

 

The red SamplingArc shows the location of 
the pixels that are used for autocorrelation. 

 

Graphic well descriptions 
 

Correlation between the current 
sample (middle graph) and the 
template (bottom graph). This is red 
when torsion is out of range. 
 
Current sample of iris striations that 
is compared against the template.  

 
Template constructed from 
samples and stored.  



 
Arrington Research 

3/2/2016 
Page 64 

The samples of iris striations are taken along an arc around the pupil. The radius of the SamplingArc is 
adjusted using the Torsion window > Radius slider that allows adjustment of the radius away from the edge 
of the pupil, the angular starting position of the arc (Angle slider), and the length of the arc (ArcDeg slider). 
The user should adjust the arc to a location where there is good variation in the iris striations. 
Sometimes iris striations are periodic, like a sine wave; each striation looks the same to the software so 
measurement of rotation beyond the period of one oscillation is impossible. Irregular iris markings are 
required for acurate torsion measurement. The location of the SamplingArc is drawn in the EyeCamera 
window. 
 

Any image feature that is not part of the iris (glints, eyelids and lashes, etc.) must be avoided. 

 
The threshold dots are automatically turned off when using torsion. This is important because the 
threshold dots are painted in the video image before the torsion sample is taken and this can adversely 
affect the performance of the torsion calculation.  
The amount of calculated torsion in degrees is displayed in the Torsion window, the PenPlot window and 
stored in the data file 

11.2  Procedure for Measuring Torsion  

This section describes the procedure for obtaining ocular torsion measurements using ViewPoint. This is 
an optional extra available only if the Torsion feature was purchased. It is assumed that the user is 
familiar with setup and thresholding as described in section 5.4. 
To open the Torsion window, select: EyeCamera window > Monitor Icon > Torsion.  

1. Ensure that Auto-Set after adjust is checked.  
2. Press the [ START ] button on the Torsion window. The button label will not say [ STOP ].  
3. Adjust the camera so that the video image of the subject’s pupil is in the middle of the 

EyeCamera window and the iris is in sharp focus. 
4. Adjust the brightness and contrast if necessary of the Threshold image. 
5. Instruct the subject to fixate at a given point.  
6. Use the Radius, Angle, and ArcDeg sliders to adjust the SamplingArc to a location where there is 

strong irregular variation in the iris striations.  
7. Ensure that the SamplingArc does not include specular reflections, the eye lid, and any other 

non-rotating areas of brightness or shadowing.  
8. Press the [ Set Template ] button, when the subject’s eyes are at zero torsion.  
9. Collect data as usual.  

When the Real-time graphics check box is checked, the graphics windows are updated with every 
vertical refresh. If you need to reduce the computational burden, uncheck Real-time graphics. 
This will only update a few times per second. This does not affect the real-time data stored in the 
data file.  

  



 
Arrington Research 

3/2/2016 
Page 65 

11.3 Torsion Demonstration Test  

This section describes a simple test that can be useful for verification and for building intuition about 
how things are working. Normally the Template is reset whenever the SamplingArc location changes, 
but if we turn OFF this feature, then changing the angle of the SamplingArc will make the data show 
ocular torsion of the amount that the Angle slider was changed. 
This starting point can be adjusted using the Angle slider. This can be used for testing and demonstrating 
the torsion calculation as follows:  

 Uncheck Auto-Set after adjust.  
 Adjust the sample angle using the Angle slider.  

As the pattern shifts away from the template pattern, the correlation peak shifts and the torsion 
calculation changes.  
When not performing this demonstration, Auto-Set after adjust should always be checked, since a new 
autocorrelation template will be required if the radius of the arc and angular starting point on the arc is 
adjusted. The autocorrelation template can also be re-fixed manually at any time by pressing the 
Set Template button.  
Section 19.21 describes the torsion commands in detail. 

11.4 Cyclovergence 

[ Zero Synch ] button is used to simultaneously set the nominal zero position of the two eyes. It does not 
reset the templates. Note that there is no absolute position that is clearly zero degrees torsion. In 
general this would be done when the subject is looking straight ahead. The [ Zero Synch ] button is 
primarily important when we want to look at differences in the amount of torsion between the two 
eyes, called cyclovergence. The cyclovergence values and graph can be displayed in the PenPlots 
window. 
The [ Set Template ] button will reset the sample of iris striation intensities that is used as the reference. 
 

11.5 Overriding the Default Torsion Parameters 

The default setting is for ViewPoint to look for torsion over +/- 20 degrees. Beyond this will cause a 
“Range Error” to be reported in the Torsion window. The default precision is 0.5 degrees of arc. These 
defaults are in place as a tradeoff between range of torsion measured and resolution due to the high 
computational burden of the calculations performed.  
Since the eye does not normally rotate about the line-of-sight more than about 9 degrees there is 
usually no need to perform the auto-correlation past this range, because increasing the range increases 
the CPU load unnecessarily. There are some situations in which this range needs to be increased, such as 
when the entire head is rotated.  
The user may adjust the torsion parameters with CLI commands; however, the user is responsible for 
testing that the combination they choose will provide valid results. Valid combinations should work up 
to +/-20 degrees at 0.5 resolutions.  



 
Arrington Research 

3/2/2016 
Page 66 

11.6  Torsion Data 

Ocular torsion occurs all the time as a normal part of eye movement. It allows the two eyes to align 
themselves so the rotational disparities between the two eyes are minimized. It helps stabilize the visual 
world in response to vestibular signals -- look closely at someones eye as they tilt their head from one 
shoulder to the other and you should be able to see the torsional rotation of their eyes. It also occurs 
when looking in different directions; say up and to the right.  

 

 Examples of torsion data Figure 27.

 

Torsion from head roll: 

 

 
Torsion from saccades: 

 

 



 
Arrington Research 

3/2/2016 
Page 67 

Chapter 12. Stimulus Presentation ( Head Fixed ) 

This section describes stimulus presentation options using the ViewPoint head fixed systems (e.g., with 
the HeadLock or QuickClamp products) system or a head mounted display (HMD) system. 

12.1  General  

ViewPoint has integrated stimulus presentation capability. By selecting menu item: 
File > Image > Load Image … a stimulus picture (bitmap file) can be chosen using the standard open file 
dialog box. The picture will appear in both the GazeSpace window and in the Stimulus windows. 
ViewPoint assumes that the BITMAP (.bmp) files are stored in the folder ~/ViewPoint/Images/.  
The user may specify an alternative default folder for image files, or may specifly a full file path name 
when using CLI. 
Hint 1: Make the bitmap image large so to avoid smooth lines being displayed as jagged.  
Hint 2: Make the bitmap image the same aspect ratio as the Stimulus window.  
The user has control over how images will be proportioned when they are displayed in the Stimulus 
window and GazeSpace window. By selecting menu item Stimuli > Image Shape > 

 Actual Size: the image will be displayed as actual size in the window.  
 Center: the image will be displayed as actual size and centered in the window.  
 Stretch to Window: the image will be scaled to fit the window. 
 Stretch Isotropically: the image will be stretched equally in all directions, maintaining the original 

proportions.  
Menu item: Stimulus > Background Color allows the user to change the background color in the Stimulus 
and GazeSpace windows. This is useful to provide “matting” color when the user has selected the image 
shape to be isotropic and there is space at the sides or at the top/bottom of the image.  



 
Arrington Research 

3/2/2016 
Page 68 

12.2 PictureList  

A PictureList is a list of picture file names. The file names may be loaded into the list using the CLI 
commands:  

pictureList_Init 

pictureList_AddName  myImageFileName-1_.bmp 

pictureList_AddName  myImageFileName-2_.bmp 

 etc. 
This is typically done in a Settings file. 
After being loaded, this PictureList may be randomized: 

pictureList_Randomize 

and then sequentially presented using, for example: 
Fkey_cmd  5  { pictureList_ShowNext  }  

Presentation may also be controlled with menu items: 

File > Images > PictureList > Next PictureList Image   

 presents the next image in the current PictureList.  

File > Images > PictureList > Restart PictureList  

 returns to the first item of the currently loaded PictureList.  

File > Images > PictureList > Randomize PictureList  

 randomizes the list of images in the currently loaded PictureList. 
Chapter 15 explains how the StateEngine can be used to very simply present a series of stimulus images 
at intervals determined by the user.  
Examples can be found in the ~/ViewPoint/Settings/Examples/PictureLists/ folder. 

See section 19.6 for a complete list of commands. 
 

  



 
Arrington Research 

3/2/2016 
Page 69 

12.3 Using the Stimulus Window (Head Fixed Option) 

The Stimulus window is the window the subject sees. Calibration StimulusPoints and stimulus images are 
shown to the subject in this window. It is best when displayed full screen on a second monitor.  
Use the Controls window >Display tab to remove or show the stimulus picture image. When unchecked the 
image is removed and all you see is the plain background color selected by the user.  

Stimuli > Stimulus Window Properties > Normal Adjustable Window 

  Makes the Stimulus Window a resizable, moveable window. 

Stimuli > Stimulus Window Properties > Custom Static Position 

Sets the Stimulus Window to be a custom size as specified by the currently loaded 
Settings file. This window is not resizable or moveable. This feature is for use with non-
standard display cards.  

Stimuli > Stimulus Window Properties > Full Screen Monitor 1 (Primary) 

Sets the Stimulus Window to be full screen on the primary monitor.  

Stimuli > Stimulus Window Properties > Full Screen Monitor 2 

Sets the Stimulus Window to be full screen on the secondary monitor. 

To use a second monitor you will need to install a second display card or a card that supports 
multiple displays into your computer and configure your computer for multiple monitors. Please 
refer to your computer manual. Additional menu itmes will appear as more monitors are added. 

Stimuli > Stimulus Window Properties > Auto Show upon Calibrate (toggle)  

Automatically shows the Stimulus window and also automatically hides the cursor (only 
during calibration, re-present or slip correction) when the AutoShow occurs.  

Stimuli > Stimulus Window Properties > Auto Hide after Calibrate (toggle)  

Automatically hides the Stimulus window after the calibration is complete.  

12.4 Stereo Display 

Stereo displays are accomodated by selecting menu item 
Stimuli > Stimulus Window Properties > Stereo Display (toggle) or CLI: stereoDisplay ON 
that does two things: 

1. It allows two color coded sets of calibration points, one set for each eye. See 8.12.4.2. 
2. It causes the stimulus image to be duplicated and presented as a Side-by-Side stereo pair. 



 
Arrington Research 

3/2/2016 
Page 70 

 StereoDisplay  Figure 28.

 

Must be in Binocular Mode for the EyeB calibration points and ROI over EyeB to be shown. 

12.5 Using the GazeSpace Window  

The GazeSpace window is a miniature representation of the Stimulus window. The experimenter may 
select from a number of ways to show and view the subject’s instantaneous position-of-gaze, using the 
check boxes on the Controls window > Display tab, as follows:  

 Calib Region shows the area within which the calibration is performed, see section 8.12.6, (unless 
custom calibration StimulusPoints are enabled, see sections 8.12.4.1) and the locations of the 
calibration StimulusPoints. 

 ROI Regions displays the Region of Interest boxes. Change ROI under the Regions tab. 
 Gaze Point shows the subjects Position of Gaze.  
 Trace Lines shows the path of eye movements. 
 Fixation Time displays fixation duration as the area of a circle increasing as the duration increases.  
 Pupil Size will display a yellow oval corresponding to pupil size at the Position of Gaze.  
 GeometryGrid to display the GeometryGrid. For GeometryGrid setup details refer to (9.1.5)  
 Calib Region shows the area within which the calibration is performed, see section 8.12.6, (unless 

custom calibration StimulusPoints are enabled, see sections 8.12.4.1) and the locations of the 
calibration StimulusPoints. Change the size and location under the Regions tab. 

 Raw Data to display the raw, uncalibrated data.  
 Picture Image to display the currently loaded stimulus picture image. 
 Record Time to display the record time when in SceneCamera ViewSource mode. 

Eye movement traces are usually only presented to the experimenter in the GazeSpace window, but 
they can also be presented to the subject in the Stimulus window. Presentation of gaze information is 
controlled through the Controls window. Display of eye traces in the Stimulus window is useful during 
setup and self- testing, but is not recommended during normal operation, since they can be very 
distracting to the subject.  



 
Arrington Research 

3/2/2016 
Page 71 

12.6  Regions of Interest (ROI)  

The stimulus area can be divided up into Regions Of Iinterest (ROI), also sometimes called Areas Of 
Interest (AOI), or window discriminator boxes. These are very useful when the experimenter wants to 
know categorically whether or not the subjects gaze was in a certain area, which can simplify the task of 
data analysis. 
It is possible to specify up to 99 ROI boxes (box numbers 1-99). When the gaze position moves inside a 
ROI, the ROI box number is stored in the data file record if a data file is open. If the boxes are 
overlapping and the gaze point is inside multiple boxes, then the data file will list all of the ROI boxes 
that were hit. The ROI that are hit are displayed in real-time in and above the PenPlot window > ROI graph. 
The PenPlot window shows the plot lines for ROI 1-7 and displays RIO numbers for all ROI that are hit 
that will fit in the data well above for that plot.  
Note carefully that the PenPlot window shows the ROI event as soon as it starts, whereas the Events 
window shows the ROI event duration only after it is completed, that is, after the gaze goes out of the 
ROI, when the duration of the ROI event can be calculated, that is how long the gaze was inside the ROI. 
To adjust individual ROI, select the Controls window > Regions tab > Region of Interest radio button.   
 

 Controls Window: Regions Tab: ROI Figure 29.

 
 
Individual ROI may be selected by clicking the right mouse button inside the ROI. The selected ROI 

will be drawn in red and the others in blue. Drag out the bounding rectangle of the ROI while holding the 
left mouse button down. Clicking the right mouse outside of any ROI will set the adjustment mode to the 
locked state.  



 
Arrington Research 

3/2/2016 
Page 72 

ROI can also be selected or locked using the Controls window > Regions tab > ROI slider to sequence 
through the RIO numbers. If the slider has focus you can also use the mouse wheel to sequence through 
the ROI numbers. The ROI coordinates of the selected ROI are displayed and updated in the GazeSpace 
window title bar and also next to the ROI slider, as you adjust the size and position of the ROI with the 
mouse. The shape of the ROI can be changed to an ellipse by checking the Ellipse [x] checkbox under the 
ROI slider. 

The Controls window > Regions tab > Revert button will undo the last change and the Default button will 
return the ROI boxes to the start-up setting. 

Use menu item Remove All button to remove all the ROI set. 
 

12.7 ROI use Corrected Data  

The eye trace lines displayed in the GazeSpace, Stimulus and PenPlots windows are corrected data. 
The corrected data can be smoothed to reduce noise, have parallax correction applied, binocular 
averaging, etc. (see section 13.2.1).   

Smoothing effects the real-time calculations. Because smoothing effects the velocity calculations the 
saccade velocity threshold must be adjusted proportionately. Smoothing will also affect which ROI boxes 
are triggered.  

Note that real-time smoothing uses a trailing average technique, whereas post hoc data analysis 
should use a symmetrical smoothing technique. Both uncorrected and corrected data are stored in the 
data file.  

 

For post-hoc analysis it is preferable to use a symmetric smoothing kernel on unsmoothed 
data.  



 
Arrington Research 

3/2/2016 
Page 73 

12.8 Associating an Image with Specific ROI 

You can associate an image with the ROI for that image. Every time an image is loaded, e.g. 
~/ViewPoint/Images/MyImage01.bmp;  

Whenever you load an Image file, ViewPoint also looks for and tryes to load an ROI file in the same 
folder with the same file name plus the extension: _ROI.txt, for example the file shown above would 
have the following file associated with it: ~/ViewPoint /Images/MyImage01.bmp_ROI.txt that contains 
the ROI specifications. The ROI file is just a special Settings file that is created using menu item: File > 

Image > Save Image ROI or CLI saveImageROI. 
For example, you have a series of stimulus images of faces with ROI that include the eyes and mouth 

of each face. You want to present the stimulus images in turn and examine how long the subject spends 
looking in each ROI for each face.  

Set up your ROI for each image and select menu item: File > Image > Save Image ROI 

Setup Picture Lists as described in 0 above. Then, when the images are loaded into the Stimulus 
window and presented to the subject, the associated ROI are also loaded.  

 

 ROI Image Association  Figure 30.

 

 

12.9 ROI Transition Statistics or Linkages 

Transitions between different ROI are call Linkages. The linkage data can be viewed in a variety of 
ways.  



 
Arrington Research 

3/2/2016 
Page 74 

The ROI Linkage window shows a graphical heat-map of ROI transition hot-spots. The values are first 
normalized, and then painted as intensities of red. It is interesting to watch this heat map as it is 
updated in real-time.  

 

 ROI Linkage Heat Map  Figure 31.

 

 
The linkages can also be displayed in tabular form in the History window, which can be saved to file, 

as shown in the figure below.  Use menu item:  Window > Dump Info > ROI Linkage Stats. 
 

 



 
Arrington Research 

3/2/2016 
Page 75 

 ROI Linkages Data  Figure 32.

 

 
Careful inspection of the table will show that (a) the sequence must have started in ROI#1, because 

there are 16 transitions from ROI#1, but only 15 into ROI#1 and that (b) the sequence must have ended 
in ROI#5, because there are 12 transitions into it, but only 11 from it. 

The “Count” values in the summary data is the sum of the “To” columns, rather than the sum of the 
“From” rows. 

12.10  Controlling Stimulus Presentation  

There are many ways to do Stimulus presentation and Experimental Control with the ViewPiont 
EyeTracker. ViewPoint itself can display images or ViewPoint can be used with a wide variety of third 
party applications. The Interfaces section 2.2 describes the many ways that ViewPoint can be controlled 
with Settings files, command lines sent via Ethernet from other applications, etc. 



 
Arrington Research 

3/2/2016 
Page 76 

Chapter 13. Data Collection  

13.1  Sampling Rate 

ViewPoint includes various modes of operation that provide predefined selection of resolutions and 
sampling rates. Available modes and sampling rates depend upon the product purchased. Which mode 
you choose will depend on your research or project requirements.  Description of these modes can be 
found under the various sections in Chapter 25, Hardware Installation.  

The EyeCamera window EyeImage is always displayed at 320 X 240, or a subsection thereof, 
regardless of the mode selected. 

13.2  Saving Data to File  

The ViewPoint data file is always saved as tab-delimited text, sometimes referred to as the standard 
spreadsheet format, so it can be easily read by most any program, e.g. MS Excel, MS Works, MATLAB, 
Mathematica, etc. The file extension does not affect the internal format of the data file. You can specify, 
or change the file extension whenever, and to whatever you want (e.g.: .txt). You can associate the file 
extension with specific applications at the operating system level, so that when you double-click the file 
icon, a specific application will open it.  

The data file will contain information about the (x, y) gaze point, elapsed time since the last entry, 
total time, pupil diameter, and a Region of Interest box number, etc. By default, the data files are stored 
in the folder named ~/ViewPoint/Data/. The default folder can be change using CLI: setPath, described 
in Section 19.25.5. 

To start recording data to file either:  
Select menu item: File > Data > New data file…. This allows the user to open a data capture file, and to 

specify a file name using the standard Open File dialog box.  
Select menu item: File > Data > Unique data file … (Ctrl-U) This opens a new data capture file with a 

unique file name without having to go through the standard Open File dialog box. The default extension 
for these files can be set using the CLI: dataFile_NewUniqueExtension described in Section 19.3.1. The file 
name created will include the date and time started starting with the year. 

File > Data > Pause Data Capture (Ctrl-P) will temporarily stop the recording of data to file while 
processing continues. Data recording can be continued by toggling this menu item off. This feature is 
different from pressing the freeze button on the EyeCamera window which stops all processing including 
image capture, as well as the recording of data to file. File > Data > Close Data File (Ctrl-W) terminates the 
writing of data and closes the open file.  

The Command Line Interface (CLI) for data files is described in Section: 19.3. 

 Unprocessed & Corrected Data 13.2.1

Two types of Gaze space data are stored in the data file:  
Unprocessed data is the calculated Position of Gaze, nothing more.  
Corrected data includes any: 

Smoothing 
Binocular Averaging 
Parallax Correction 
GazeNudge Correction, etc. 



 
Arrington Research 

3/2/2016 
Page 77 

Typically, you would apply these corrections post-hoc from the unprocessed data but, for 
convenience, we provide them for you. These corrections require additional setup and will cause the 
data to be incorrect if they are not done properly. 

ROI, Fixation duration and events are based upon corrected data 

13.3  Data File Format  

 File Header Information 13.3.1

At the top of each data file is file header information that includes the data and time that the data 
was collected, the apparatus geometry settings that can be used to obtain the gaze angle in degrees, 
whether smoothed or unsmoothed data was stored, etc. 

 File Records 13.3.2

Each line of the data file is a unique data record. The type of record is indicated by the integer “Tag” 
value in the first column. The tag lets us know how to interpret the entries that follow on that line. The 
record entries on the line are tab separated into column positions. The number of columns in the eye-
data record will depend upon the options selected for data collection. For example, if torsion is not 
being measured there will be no such column in the data file. If running in binocular mode, then 
additional data will be included for the second eye. The meaning of the various data record tags is 
described in detail in Section 13.3.4. 



 
Arrington Research 

3/2/2016 
Page 78 

 Synchronous vs. Asynchronous Data Inserts 13.3.3

ViewPoint provides for synchronizing eye movement data with other events and other data. This is 
usually performed by inserting extra data into the ViewPoint data file. This extra data can include 
Markers, and Strings. These can be inserted in two ways, either (a) on the same line as the eye tracker 
data (synchronously), which makes reading into spreadsheets much easier, or (b) on separate data lines 
(asynchronously), interleaved with the eye tracker data, which allows individual time stamps for each 
inserted item. 

A simple method of synchronization with other devices and programs is achieved through insertion 
of ASCII character markers into the data stream. By default, menu item File > Data > Asynchronous Marker 

Data is toggled OFF, so data markers will be synchronously added into the data file stream, in the Marker 
column. If more than one character was inserted, they will appear as a comma separated list of 
characters. If this menu item is checked ON, ASCII character data markers will be asynchronously 
inserted into the data file stream as they arrive, with individual time stamps, and there will be no 
Marker column.  

By default, menu item File > Data > Asynchronous String Data is toggled ON and string markers will be 
asynchronously added into the data file stream with individual time stamps.  See Figure 8. 

 

 DataFile with Synchronously and Asynchronously Inserted Markers Figure 33.

Run the following set of CLI commands from a Settings file: 
dataFile_asynchStringData  YES 

dataFile_InsertString   "CAT_A (asynchronous)" 

dataFile_InsertString   "CAT_B (asynchronous)" 

dataFile_asynchStringData  NO 

dataFile_InsertString   "DOG (synchronous)" 

 
Produce the following data file lines: 

1
0 

2.
5322 

33
.3327 

0.4
924 

0.4
746 0 

0.
1469 

0.
8936 1 

0
.6339 

7
4 

  1
0 

2.
5656 

33
.406 

0.4
924 

0.4
746 0 

0.
1469 

0.
8936 1 

0
.6673 

7
5 

  1
2 

2.
577245 

CAT_A 
(asynchronous) 

         1
2 

2.
580258 

CAT_B 
(asynchronous) 

         1
0 

2.
6419 

76
.3175 

0.4
924 

0.4
746 0 

0.
1469 

0.
8936 1 

0
.7437 

7
6 DOG (synchronous) 

1
0 

2.
6513 

9.
3698 

0.4
924 

0.4
746 0 

0.
1469 

0.
8936 1 

0
.753 

7
7 

  1
0 

2.
6657 

14
.4061 

0.4
867 

0.4
734 0 

0.
15 

0.
875 1 

0
.7674 

7
8 

  
 

 



 
Arrington Research 

3/2/2016 
Page 79 

 Data Record Tags. 13.3.4

The “Tag” value that begins each line in the first column indicates the type of information in that 
line, i.e., in that data record. Details are provided in the tables here below; the primary record types are 
as follows:  

Tag #10: EyeData containing a variable number of columns depending on the options selected for 
data collection. Refer to Table 6. 

Tag #2: ASCII Character Marker. If menu item File > Data > Asynchronous Marker Data is checked ON, 
then single ASCII character event markers will be inserted asynchronously into the data file. Certain 
ASCII characters are automatically entered into the data stream to indicate a particular event has 
occurred. The type-2 record contains three entries, as described in Table 8. 

Tag #12: An ASCII character string asynchronously inserted during certain events. For example, by 
the CLI in response to certain commands. 
 E.g. “pictureList_ShowNext.”, “dataFile_InsertString “picture of a cat” from a Settings file, or an 
external program. Refer to Table 10. 

Tag #3: An ASCII character string generated by ViewPoint to provide general information, such as 
when the data file was created.  

Tag #5: An ASCII character string generated by ViewPoint to provide column heading information. 
Refer to Table below. 

Tag #6: A three character data column identifier generated by ViewPoint. Refer to Table 11 
Tag #14: Asynchronously inserted head tracker data. 
Tag #16: Picture Image File Name. 
Tag #777: Movie Frame Number. 

 User Defined Data 13.3.5

Users can insert data from their own sources (EEG, EMG, 6-DOF trackers, etc.) into a data file using 
their own specified data tag.  The tag appears in column 1 of the data file. The insertion is done 
asynchronously with respect to the eye movement data records and the insertions are uniquely time 
stamped.  Tag identifiers must be in the range 800-899. Use the CLI: dataFile_InsertUserTag .  See 
section 19.3.4.



 
Arrington Research 

3/2/2016 
Page 80 

  

  Eye Data Table 7.

Column Heading Type Description 

Tag int The value 10 in the first column indicates an eye data record 

TotalTime float TotalTime = time elapsed in seconds  

DeltaTime float dt = delta time in milliseconds since the previous data entry  

X_Gaze float X = Direction of Gaze normalized with respect to the x-axis  

Y_Gaze float Y = Direction of Gaze normalized with respect to the y-axis  

X_CorrectedGaze float Same as X_Gaze but may include smoothing, averaging, parallax 

correction, nudging, etc… 

Y_CorrectedGaze float Same as Y_Gaze but may include smoothing, averaging, parallax 

correction, nudging, etc… 

Region list Which ROI or ROIs the gaze point is in  

PupilWidth float Pupil width normalized with respect to the EyeCamera window.  See 

section 0. 

PupilHeight float Pupil widthheight normalized with respect to the EyeCamera window 

width.  See section 0. 

Quality int Quality of eye movement data. See section 13.11 for a complete 

description of the codes.  

Fixation float Fixation duration in seconds. A zero value indicates a saccade. 

PupilDiameter float Pupil Diameter is calculated using the major-axis (max dimension of 

PupilWidth and PupilHeight.) The normalized units of the pupil size 

are converted into millimeters using the pupil scale factor from the 

pupil calibration. See section 9.3. 

Torsion float Torsion in degrees. -998 indicate Torsion not being calculated. -999 

indicate “Range Error”. Only displayed if torsion is being measured.  

Count int Eye movement data record count, useful for sorting 

Mark char Any printable ASCII character, e.g., {a-z, A-Z, 0-9,=,#,+,%, etc.}. See 

Table 8, below. 

pXraw float RawPupil. Only displayed if option to save raw data is checked 

pYraw float RawPupil. Only displayed if option to save raw data is checked 

gXraw float RawGlint. Only displayed if option to save raw data is checked 

gYraw float RawGlint. Only displayed if option to save raw data is checked 

  

 



 
Arrington Research 

3/2/2016 
Page 81 

 
 

 Asynchronous Marker Record Structure, Tag = 2 Table 8.

Column # Type Value 

1 integer 2 = integer indicates data structure type 2  

2 float Time Stamp  

3 character Any ASCII character, e.g., {a-z, A-Z,0-9,=,#,+,%, etc.}  

Automatically inserted tags include: + Start or resume data collection, 

and = Pause data collection  

 

 String Data Record Structure, Tag = 3 Table 9.

Column # Type Value 

1 integer 3 = integer indicates data structure type 3  

2 string File header information, an ASCII character string generated by 

ViewPoint 

 

  String Data Record Structure, Tag = 12 Table 10.

Column # Type Value 

1 integer 12 = integer indicates data structure type 12  

2 float Time stamp  

3 string ASCII character string from “dataFile_InsertString”, etc. 

 

  



 
Arrington Research 

3/2/2016 
Page 82 

 Column Header Data Record Structure (Tag # 5 and Tag # 6)  Table 11.

Column # Type Tag Value Eye / Head 

1 Integer 5 6  

2 – n String 

TotalTime  

DeltaTime 

X_Gaze  

Y_Gaze  

X_Corrected Gaze 

Y_Corrected Gaze 

Region (ROI) 

PupilWidth  

PupilHeight  

Quality  

Fixation 

PupilDiameter 

Torsion 

ATT  

ADT  

ALX  

ALY 

ACX 

ACY 

ARI  

APW  

APH  

AQU  

AFX 

APD 

ATR 

 
 

Eye_A 
 
 

  TotalTime  

DeltaTime  

X_Gaze  

Y_Gaze  

X_Corrected Gaze 

Y_Corrected Gaze 

Region (ROI) 

PupilWidth  

PupilHeight  

Quality  

Fixation 

PupilDiameter 

Torsion 

BTT  

BDT  

BLX  

BLY 

BCX 

BCY 

BRI  

BPW  

BPH  

BQU  

BFX 

BPD 

BTR 

Eye_B 

 

  X  

Y  

Z  

Yaw 

Pitch 

Roll 

HPX  

HPY  

HPZ  

HAY  

HAX 

HAZ 

Head Tracker Option only 

 

  Count 

Marker 

CNT  

MRK 

 

 
 

  



 
Arrington Research 

3/2/2016 
Page 83 

13.4 PupilWidth and PupilHeight calculations 

PupilWidth and PupilHeight calculations are relative to which pupil segmentation method is active. 
Ellipse - PupilWidth is the major-axis (larger value) and PupilHeight is the minor-axis (smaller value).  
The major-axis and the minor-axis are both normalized by the width of the EyeCamera window so the 
scales of the axes are commensurable. 
Oval Fit - PupilWidth is the HORIZONTAL dimension and PupilHeight is the VERTICAL dimension of the 
rectangular bounding box of the unrotated Oval.  The HORIZONTAL and VERTICAL dimensions are both 
normalized by the width and height of the EyeCamera window respectively so the scales of the axes are 
incommensurable. 
Centroid - PupilWidth and PupilHeight are 0, because no pupil size is obtained. 

13.5  Direction-of-Gaze Coordinates  

The values X and Y are the coordinates of the direction-of-gaze with respect to the Stimulus window 
coordinate systems. For example, 0.0, 0.0 will mean that the Position of Gaze is in the top left hand 
corner of the Stimulus window; 0.5, 0.5 will mean that the Position of Gaze is in the center of the 
Stimulus window; and 1.0, 1.0 means that the Position of Gaze is in the bottom right hand corner.  

The calculated (x, y) gaze location is initially in the same space as the calibration point locations. The 
calculated gaze is then normalized with respect to the x-axis and y-axis respectively. ViewPoint allows 
the GazePoint to be extrapolated outside of the calibration window. This is particularly important for 
using the CursorControl Feature (see Chapter 10 Cursor Control Feature).  

13.6  Raw Data 

Raw (unmapped EyeSpace) data can be saved to the data file by selecting menu File > Data > Include 

Raw (unmapped EyeSpace) Data, or using CLI:  dataFile_includeRawData . 

13.7  Timing Measurement  

ViewPoint includes high precision timing (HPT) with resolution in the order of 0.0000025, i.e., 2.5E-6 
or 2.5 microseconds. The HPT is available to integrators via the SDK function call: 
VPX_GetPrecisionDeltaTime.  Refer to section 20.6 for details. 

The Total Time and Delta Time values available in the DLL and the Data file are software time 
stamps.  This means that ViewPoint puts a time stamp on the data when it arrives and the variability of 
the time stamps are due to CPU load handling. When hardware digital camera or frame grabber 
manufactures do not supply actual hardware time stamps, we use the software based time stamps.   

Derivative calculations using time, like velocity, should assume a fixed delta time to prevent 
unwanted noise from the software variability of the time stamps. 

 

The crystal clock in the camera is very precise, so the field and frame delivery from the camera is 
very regular.  For example with analog cameras at 16.6667 msec for 60 Hz data and 33.3333 
msec for 30 Hz data, respectively. Variability of the time stamps is due to CPU load handling. 

 



 
Arrington Research 

3/2/2016 
Page 84 

In the DataFile the Total Time is the elapsed time in seconds starting with the first record of data 
collection. By default Menu item File > Data > Start Data File Time At Zero is checked (ON) which causes the 
first record of the data file to start at time zero. If this menu item is unchecked (OFF), the data records 
will start at the current High Precision Time maintained in the DLL and sharable between applications 
using the ViewPoint SDK via that DLL. See section 20.6.  

To make the time more intuitive and more manageable, ViewPoint provides times since it was 
launched, rather than from when the computer was started. 

Delta Time is the number of milliseconds since the previous matching record entry. This represents 
the time that the software has finished processing each frame and the eye movement data is available.  

13.8 Display Screen Geometry 

The data file also contains header information that specifies the results of the GeometryGrid 
calculations for screen size and viewing distance. The screen size values saved will be the values 
calculated for the entire screen width and height, not the measured lengths of the lines (that are 20% 
less) entered by the operator. See section 9.1.5. 

13.9 Events Data 

The content of the Events window can be included into the DataFile by checking the menu item: 
File > Data > Include Events in Data File, or using CLI:  dataFile_includeEvents . 

The content of the Events window can also be saved into a separate eventsFile using the menu item: 
File > Events > New Events File …, CLI: eventsFile_NewName , or using the menu item: 
File > Events > New Unique, CLI: eventsFile_NewUnique , and eventsFile_Close . 

More information on the Events window is in section 14.2.4. 



 
Arrington Research 

3/2/2016 
Page 85 

13.10  Regions of Interest (ROI)  

Often one is only interested in whether or not the POG is within specific regions. Regions of Interest 
(ROI), sometimes called Areas of Interest (AOI), may be defined as described in 12.6 . When the 
corrected POG is within one of these boxes, the region number is stored in the data file. The ROIs may 
be overlapping or nested, and so the POG can be in more than one region at a time.  The data file 
stores the current regions the POG is in at the time each EyeData record is processed.  The available 
values for the Region column are: 

-1  indicates that the Position of Gaze (POG) is not in any of the regions,  
n  indicates that the POG is in region n,  
n,m  indicates that the POG is in more than one, overlapping ROI.  

ROI #0 is deprecated, because it cannot be signed as +/- to indicate ROI into and out-of events 
respectively. Do not use ROI#0. 

13.11  Quality Marker Codes  

ViewPoint provides a data quality code for each eye. The Quality column contains an integer code 
ranging from 0, which is the best possible case, to 5. The hierarchical code structure allows the user to 
make their own assessment of whether the data is valid or not for their purposes. Quality marker codes 
are listed below:  

 Quality Codes  Table 12.

Code Description   

0 The user has selected to use the glint-pupil 

vector method and both features are 

successfully located.  

VPX_QUALITY_GlintIsGood 

1 The user has selected to use the pupil only 

method and the pupil was successfully located  

VPX_QUALITY_PupilOnlyIsGood  

2 The user has selected to use the glint-pupil 

vector method and the glint was not 

successfully located but the pupil was 

successfully located. Defaults to pupil only 

method for data recorded.  

VPX_QUALITY_PupilFallBack  

3 In either the pupil only or glint-pupil vector 

method, the pupil exceeded criteria limits 

set.  

VPX_QUALITY_PupilCriteriaFailed  

4 In either the pupil only or glint-pupil vector 

method, the pupil could not be fit with an 

ellipse.  

VPX_QUALITY_PupilFitFailed 

5 In either the pupil only or glint-pupil vector 

method, the pupil scan threshold failed.  

VPX_QUALITY_PupilScanFailed  

 
Section 20.4   Data Quality Codes, shows how a layered application uses the SDK to get quality 

values. 
Section 19.27.5 shows how the quality level can trigger TTL output changes. 



 
Arrington Research 

3/2/2016 
Page 86 

Chapter 14. Data Display & Analysis 

14.1  Real-Time 

The ViewPoint EyeTracker ® provides several means of monitoring eye movements in real-time including 
the PenPlot, the GazeSpace, and the Events windows. 

 GazeSpace and PenPlot Windows  Figure 34.

 

 
 

 
 
 
 
 

 
 
 

  
 PenPlots 14.1.1

The penPlots provide a wealth of real-time data. Use CLI: penPlot_dumpNames to get a complete 
list. See Table 15, PenPlot names and Meanings for more information. 

The PenPlot window shows both 
line graph and numerical data. 

The GazeSpace window 
displays 2D eye movements 
in real-time over the 
stimulus.  

Use the Controls window >Display tab to 
choose which data to display in the 
GazeSpace & Stimulus windows.. 



 
Arrington Research 

3/2/2016 
Page 87 

 PenPlot Window  Figure 35.

 
 

 Data Smoothing 14.1.2

Smoothing effects the real-time calculations of corrected data. Data displayed in the PenPlot and 
GazeSpace windows is corrected data. 

Because smoothing effects the velocity calculations the saccade velocity threshold must be 
adjusted proportionately.  

Smoothing will also affect which ROI boxes are triggered.  

Adjust the amount of smoothing with the Controls window > Criteria tab > Smoothing Points slider or CLI 
smoothingPoints. When the slider is positioned at the far left, no smoothing is performed. Incrementing 
the slider to the right increases the number of previously obtained data points included in the average 
calculation. A value of 4 makes attractive and useful real-time graphics. 

The smoothing algorithm can be selected using the Smoothing Method pulldown menu, or CLI 
smoothingMethod; in each case the number of pointsBack equals the number set by the user:  

Simple Moving Average (SMA).  
The SMA method uniformly averages N pointsBack, i.e., all points having equal weight.   
SMA(t) = [ x(t) + x(t-1) + ... + x(t-n) ] / N ; where n = (N-1) 

Exponential Moving Average (EMA).  
The EMA method uses the following algorithm: 
EMA(t) = ( currentValue - EMA(t-1) ) * K + EMA(t-1) ; where K = 2 / ( pointsBack + 1 ).  

Note that real-time smoothing uses a trailing average technique, whereas post hoc data analysis 
should use a symmetrical smoothing technique. Both uncorrected and corrected data are stored in the 
data file.  

 

For post-hoc analysis it is preferable to use a symmetric smoothing kernel on unsmoothed 
data.  

B = Blink 
F = Fixation 
S = Saccade.  

D = Drift 

The inclusion of a particular PenPlot may be toggled via the menu 
items at: Menu: PenPlots > * . They may also be specified in CLI 

instructions, e.g.:  penPlot +events  –drift.  

 

Zoom-in or zoom-out on a particular PenPlot by clicking the right mouse button in 

the PenPlot graph well. Also adjustable via CLI penPlot_Range, see: 19.15.7. 

 

For additional PenPlot 
control, refer to section 19.15  

Lines appear white when one of the following data criteria is 
violated: 
- Maximum Pupil Width 
- Minimum Pupil Width 
- Pupil Aspect Criterion 

 



 
Arrington Research 

3/2/2016 
Page 88 

14.2 Fixation, Saccade, Drift and Blinks 

 Fixations  14.2.1

Three criteria values effect the creation of a completed Fixation Event: the Saccade Velocity 
criterion, the Fixation Drift Allowed, and the Fixation Time Criterion. 

 Whenever (a) the velocity was below the saccade velocity criterion, and (b) drift was less than the 
Drift Criterion, ViewPoint will start adding up fixation time. This fixation time is (a) included in the data 
file as a cumulative value, (b) displayed as a ramp function in the Fixation Time penPlot graphicsWell, and 
(c) marked in the Events penPlot graphicsWell by the letter ’F’.  

If the cumulative fixation time also meets the Fixation Time Criterion, then a completed Fixation 
Event is included in the Events window; this shows the average fixation location and the total fixation 
duration.  

The fixation duration value appears in the data file in the AFX column. These are the same values as 
those shown in the PenPlot window in real-time.  Note that these values are based on the smoothing 
algorithm, the amount of smoothing applied, and the qualitative saccade velocity threshold adjusted by 
the user (possibly in the middle of data collection). It may be preferable to apply a symmetrical 
smoothing kernel to the un-smoothed data during post-hoc data analysis and to determine the optimal 
saccade criteria at that time. 

The following sections describe the fixation criteria in more detail. 
 

 Controls Window: Criteria Tab & PenPlot Threshold Lines Figure 36.

  

 



 
Arrington Research 

3/2/2016 
Page 89 

 Criteria Levels 14.2.1

Criterion levels are displayed in the PenPlots window. Lower thresholds are distinguished by “legs” 
going down from the criterion level to the bottom of the penPlot graphicsWell. Upper thresholds are 
distinguished by “arms” going up from the criterion level to the top of the penPlot graphicsWell.  

The upper and lower criterion levels are not allowed to cross, for example the Minimum Pupil Width 
cannot be greater than the Maximum Pupil Width, as shown in the Pupil Major-axis penPlot. 

CLI:   penPlot  +TVelocity  +Drift  +FixationTime 

 Saccade Velocity Criterion 14.2.2

The the Controls window> Criteria tab > Saccade Velocity slider (See Figure 36) provides a qualitative 
means for discriminating saccades from fixations. Adjustments to this threshold should be done while 
examining the Total Velocity penPlot graphicsWell in the PenPlot window. You can see when the subject 
fixates and saccades from the velocity spikes in this trace. The value of the spikes is simply the change in 
2D position without being divided by sampling interval time.   

GUI: Controls window > Criteria tab > Saccade Velocity slider 
CLI: velocityCriterion NormalizedValue 

Note that, changing the Smoothing value will affect the magnitude of the Total Velocity value. 

Looking at the PenPlot when the subject is fixating you will see that the Total Velocity trace contains 
noise (thermal, video noise etc.) If saccades are large, then the placement of the saccade threshold is 
not so critical. If saccades are small more care should be taken. There is a trade-off in terms of 
misclassifying noise as a saccade or a small saccade being below threshold. 

The Saccade Velocity slider value does not have the same affect on the EyeData after changing 
the frame rate or the Stimulus window size.  This is a direct result of the Total Velocity being 
the change in 2D position, rather than a true derivative velocity (divided by time) and because 
the Total Velocity is in normalized units relative to the Stimulus window. 

Ex 1: Let’s say the POG travels at a constant speed and covers a 0.3 distance in 1 second.  On a 
30 Hz system, each eye frame would show a distance traveled of 0.01.  On a 60Hz system, 
each eye frame would show a distance traveled of 0.005. So the magnitude of the Total Velocity 
is higher for the slower 30Hz frame rate. 

Ex 2: Let’s say you calibrate on a Stimulus window that is full screen and you gaze from the left 
side to the middle of the Stimulus window at a constant velocity in 1 second.  The distance 
traveled would be 0.5. Now let’s say you calibrate on a Stimulus window that is half full screen 
size and you gaze from the left side to the right side of the Stimulus window at a constant 
velocity in 1 second.  The distance traveled would be 1.0.  In the real-world, the distance 
traveled in 1 second was the same (half the monitor) for both calibrations but since the 
distances are normalized with respect to the Stimulus window they are not the same (0.5 vs. 
1.0).  So the magnitude of the Total Velocity is higher for the smaller Stimulus window. 

This means that you may have to readjust the Saccade Velocity criterion when changing frame 
rates or when changing the size of the Stimulus window in order to trigger similar saccades as 
before. 

The 3DViewPoint and 3DWorkSpace products provide velocity in degrees per second. 



 
Arrington Research 

3/2/2016 
Page 90 

 Drift Criterion 14.2.3

Note that the eye may be slowly drifting or in a low velocity smooth pursuit, such that the velocity is 
below the Saccade Velocity criterion. For this reason we also provide a Drift criterion that establishes the 
maximum distance that the POG may move away from the putative fixation point. That is, we impose 
the additional criterion that the POG must remain within a certain distance of the initial fixation point. 
Fixation drift is in units of normalized Stimulus window width.  

GUI: Controls window > Criteria tab > Drift Allowed slider 
CLI: driftCriterion NormalizedValue 
The absolute drift distance and the specified Drift criterion level are shown in the Drift penPlot 

graphicsWell. When drift exceeds criterion level, the letter ‘D’ appears in the Events penPlot 
graphicsWell. 

 Fixation Time Criterion 14.2.1

Specifies the the minimum fixation time required for a tentative fixation to be classified as a Fixation 
Event.  This criterion level is displayed in the PenPlot window Fixation Time graphicsWell as a lower 
level line with vertical legs going down to the bottom.  

GUI: Controls window > Criteria tab > Fixation Time Criterion slider 
CLI: fixationMinimumSecondsCriterion  seconds 

 Blinks 14.2.2

As the eye lid comes down during a blink, the elliptical fit to the pupil becomes increasingly flat 
before it disappears. This characteristic change in the aspect ratio of elliptical fit to the pupil can be used 
to detect blinks. A blink is classified as the pupil aspect ratio crossing below the threshold. 

GUI: Controls window > Criteria tab > Pupil Aspect Criterion slider 
CLI: pupilAspectCriterion  NormalizedValue 

 Events Markers 14.2.3

Provisional event markers for Fixatios, Saccade, Drift and Blink events are displayed in the PenPlot 
window in the Events graphicsWell as the following characters: 

D – Drift 
F – Fixation 
S – Saccade 
B – Blink 

 
Fully qualified events are also displayed in the Events window after they end (because we need an 

event duration).  Be careful to note that the fixation F will appear in the PenPlot window as soon as the 
fixation starts, but the completed fixation will not be posted to the Events window until it is completed, 
and only if it meets the Fixation Time Criterion, because the Events window shows the duration of the 
fixation. 

 Events Window 14.2.4

The contents of the Events window can be saved to either the DataFile or a separate EventsFile; see 
section 13.9 for details. 

 



 
Arrington Research 

3/2/2016 
Page 91 

 Events window Figure 37.

 

 

 SDK 14.2.5

The real time values for all DataPoints are available via the DLL based SDK. See Section 20.9. 

14.3  Post-Hoc 

The data file format is described in Chapter 13. 
We also provide a basic data analysis program that allows displaying data in both a LineGraph (time 

plot) and a 2D (x,y) plane overlaid on the visual stimulus. The DataAnalysis program can be launched by 
itself from the folder or it can be launched when the data file is closed. See section 5.7, Figure 7. 

  Button:  Controls window > Record tab > Analyze button 
  Menu:  File > Data > Close & Analyze Data File 
  CLI:   dataFile_CloseAndAnalyze 

 
By default, ViewPoint looks for ~/ViewPoint/DataAnalysis.exe, however this may be changed 

using CLI: dataAnalysisApp, for example: 
 

 dataAnalysisApp "anotherAnalysisApp.exe"  // Defaults to the ViewPoint folder 

 dataAnalysisApp "C:/ARI/DataAnalysis.exe" // Full path 

 dataAnalysisApp "C:/Windows/write.exe"    // Launches Wordpad 

14.4  Summary Data 

Summary data can be viewed using menu item: Window > Dump Info > ROI Linkage Stats. This includes 
fixation and blink summary data as well as ROI transitions. Refer to Figure 32. 



 
Arrington Research 

3/2/2016 
Page 92 

Chapter 15. State Engine 

ViewPoint contains a powerful state space engine for experiment control. The user defines a series 
of states which contain: 

 stateMode: a unique numeric identifier for the state 

 stateLabel: descriptive text to describe the state 

 stateCommand: a deferred CLI command or commands in braces, e.g.: to load an image, 
calibrate or to load a Settings file. 

 Transition: stateTimeout action or, stateJump 

15.1 State Engine Commands 

 State Initialization  15.1.1

The StateSpace must be initialized before using or reusing it.  Command stateSpaceInit clears 
information for all states, sets all values to zero etc. 

stateEngine <boolValue> turns the state engine on or off. 
After turning the state engine on you must direct it to your chosen start state. stateJump <integer 

nextState> forces a jump to the specified state.  If no state number is specified, then the engine will 
jump to state 0. 

stateRecordInit <int> clears all information for the specified state and may be useful for 
debugging. 

 State Setup 15.1.2

Each state must be given a unique numerical identifier using stateMode <int> 
The user can also specify a descriptive identifier for each state using: stateLabel <string> 
E.g.   

stateMode 1 // declares state 1 

stateLabel “ performs calibration” 

A descriptive stateLabel is useful for clarity and is displayed when the command stateDump is 
called which dumps current state information to the History window. 

 State Commands 15.1.3

Each state may contain instructions to be sent to the CLI parser.  Multiple commands are 
separated by semi-colons. 

 This can also include an instruction to load a separate Settings file, e.g.: 
stateCommand  { pictureList_ShowNext  } 

stateCommand  { settingsFile_Load  “experiment2/slipCorrect.txt”  } 

stateCommand  { stimulus_LoadImageFile “blue.bmp” ;  midiNote 5 6 4 ; clearROIData  } 

 
 

 State Transition Commands 15.1.4

Each can include an action that triggers a jump to another state as follows: 
 



 
Arrington Research 

3/2/2016 
Page 93 

 State Transition Commands Table 13.
Timeouts stateTimeOut <double float milliseconds> <integer nextState> 

After the specified time has elapsed, then the state engine will jump to the 
declared next state. 

ROI-Into   
ROI-OutOf  
events 

 

stateEnterROI <integer roi index> <integer nextState> 
If the Position of Gaze enters the specified Region of Interest (ROI), then 

the state engine will jump to the declared next state. 
stateExitROI <integer roi index> <integer nextState> 
If the Position of Gaze exits the specified Region of Interest (ROI), then the 

state engine will jump to the declared next state. 

Key presses 
 

stateKeyPress <printable ASCII character> <integer nextState> 
If the user presses the keypad key for the specified character, then the 

state engine will jump to the declared next state. These are case sensitive and 
state dependent. i.e. they will only work when the engine is in that particular 
state.   

Note: For a global key press, use the FKey definition in the initialization 
part of your state file. E.g. 
FKey_cmd 9 { stateJump 2 }  

// when the user presses FKEY 9 then jump to state 2 

//  which presents the next image 

Immediate Jump stateJump <integer nextState> Forces jump to the specified state. 

 

 State Space Debug 15.1.5

stateDump prints detailed info to the History window. 
 

15.2 Picture Lists 

The user can define a series of images to be presented using the pictureList feature.  Refer to 0  
An end action can be defined that will be performed when the last picture in the picture list has been 
presented, i.e. the list pointer is incremented to the end. These do not need to be associated with a 
particular state, but can be defined in the initialization part of the file, for example: . 

State command: pictureList_EndAction string 
E.g. { pictureListEndAction “stateJump 0 }” 
Or 

pictureList_EndAction “dataFile_close”  

etc. 

15.3 Counters 

Counters can be setup and incremented or decremented when a user defined state is entered.  In 
the example above, the user wants to pause stimulus presentation after three images have been 



 
Arrington Research 

3/2/2016 
Page 94 

presented, then resume on fKey press. As with the picture list setup, the counters can be initialized and 
the zero action defined in the first part of the file, they do not have to be associated with a particular 
state. 

 
1. counterSet  counterId  countValue 

counterId is in { 0 ... 9 } a user defined identifier for that counter 
countValue in any non-negative number { 0 ... maxInt } a user defined starting number for that         

counter 
E.g.  counterSet 0 25 
Sets or resets the value of counter 0 to be 25. 
 
2. counterAdjust counterId  adjustValue 

counterId is in { 0 ... 9 } a user defined identifier for that counter 
adjustValue is any number { -maxInt ... +maxInt } a user defined operation to apply to the count 
E.g. counterAdjust 0 -1 // decrements the 0 counter value by one 
 

Caution: currently there is no runtime checking for overflow or underflow; positive-negative 
wrap-around is typical behavior in such cases. 

 

3. counterZeroAction counterId { commandString } 

counterId is in { 0 ... 9 } a user defined identifier for that counter 
commandString is an 8-bit char string up to length 255 that defines the action to be formed when 

the counter value becomes zero following a counterAdjust operation. 
E.g. counterZeroAction 0 { stateJump 0 ; midiNote 8 6 2 } 
Continued decrements past zero will produce negative counterValues, but will not trigger the 

zeroAction. 
 
4. counterModulusAction counterId modulusValue { commandString } 

counterId is in { 0 ... 9 } a user defined identifier for that counter 
modulusValue is a positive integer; set to zero to inactivate the modulus check. 
commandString is an 8-bit char string up to length 255 that defines the action to be formed when 

the counter value % modulusValue equals zero following a counterAdjust operation. 
E.g. counterModulusAction 1 5 { midiNote 8 6 2 } 

15.4  Miscellaneous 

When your experiment incorporates calibration or SlipCorrection, it may be useful to define an 
action to be performed after they are completed. 

Only one state is active at a time. The StateEngine controls the transitions between states.  See 
Figure 38 below for a flow chart of a simple experiment.  The user wishes to present five images, for 
specific times with a slip correction before each image is presented.  After 3 images are presented, the 
image presentation is paused and waits for a key press before continuing. 



 
Arrington Research 

3/2/2016 
Page 95 

 
  

 Figure 1: Simple Experiment Flow example Figure 38.
 

 
 
 

 



 
Arrington Research 

3/2/2016 
Page 96 

// Must initialize the StateSpace before using (re-using) it. 
stateSpaceInit 
//  **** setup list of stimulus images 
pictureList_Init 
pictureList_AddName “pic1.bmp” 
pictureList_AddName “pic2.bmp” 
pictureList_AddName “pic3.bmp” 
pictureList_AddName “pic4.bmp” 
pictureList_AddName “pic5.bmp” 
pictureList_AddName “end.bmp” 
pictureList_EndAction { stateJump 6 } //when end of picture list comes, goto state#5 
// 
// **** setFKey action 
fkey_cmd 9 { stateJump 2 } // when the user presses FKEY 9 then jump to state 2 and present the next image 
// 
// **** setup calibration  
calibrationPoints 16 
calibration_PresentationOrder Random 
// 
// **** open datafile 
dataFile_NewUniqueExtension "_experiment1.txt" 
dataFile_NewUnique 
// 
// **** set up counter info 
counterSet 0 3 
counterZeroAction 0 { stateJump 0 } 
// 
// *** STATE 0 idle **** 
stateMode 0 
stateLabel "idle state" 
// 
// *** STATE 1 calibration **** 
stateMode 1 
stateLabel "autocalibrate" 
stateCommand { calibrationStart } 
stateTimeOut 18 2 
// 
// *** STATE 2 presents next picture *** 
stateMode 2 
stateLabel "present next picture" 
stateCommand { pictureList_ShowNext } 
stateTimeout 5   3   // after 5 seconds, goto state#3 
// 
// *** STATE 3 decrement counter 
stateMode 3 
stateLabel "counter decrement" 
stateCommand { counterAdjust 0 -1 } // decrements count 
stateTimeout 0.0   4   // immediately, goto state#4 
// 
// *** STATE 4 performs slip correction *** 
stateMode 4 
stateLabel "performs slip correction" 
stateCommand  { settingsFile_Load  “experiment2/slipCorrect.txt" } 
stateTimeout 2   2   // after 2 seconds, goto state#2 
// 
// *** STATE 5 close data file*** 
stateMode 5 
stateLabel "closes datafile" 
stateCommand  { dataFile_Close } 
stateTimeout 0.1   0   // immediately, goto state#0 
//  
stateJump 1 
// finally, we must start the StateEngine running! 
stateEngine On 
End  

Setup and 
initialization  
of the state engine, 
pictureList, FKeys, 
etc. 

Define starting state and turn engine on 

State definitions 



 
Arrington Research 

3/2/2016 
Page 97 

Chapter 16. Using Settings Files  

All the Graphical User Interface (GUI) controls in the ViewPoint application have equivalent Command 
Line Interface (CLI) strings that are interpreted by the Command Line Parser (CLP). All of the GUI values 
and selections (menu selections, slider values, etc.) can be saved in a Settings file that can be later read 
back into the CLI next time the program is run, so the user can start working without resetting 
everything by hand. The Settings file also contains calibration values, ROI specifications and other 
program variables. By default, ViewPoint assumes that the Settings files are stored in the folder: 
~/ViewPoint/Settings/.  

The Settings files are in (usually tab delimited) ASCII format. Settings files can be saved and loaded 
using menu selections, as described in 16.2 Saving and Loading Settings Files.  
The Settings file consists of individual lines of ASCII text that may be edited using an editor. The 
document must however (a) be saved as text only (b) have each command separated by a semicolon, 
and (c) conform accurately to spelling and spacing requirements. The CLI is not case-sensitive. An editor 
with good tab setting capabilities is recommended because the row entries are tab separated. The 
default Settings file extension is .txt which helps exclude unusable files that contain extra formatting, 
such as Rich Text Format (.rtf) and MS Word format files. Use menu item File > Settings > Edit Settings to 
select an existing Settings file to edit. 
Do not modify anything that you do not understand.  
Settings Files may be nested (i.e. one Settings file may call another Settings file, see: settingsFile_Load). 
Consequently, it is desirable for each file to be reasonable in length. Currently the Settings file is limited 
to 2000 lines, including comment lines. Note however that the same Settings file cannot be called 
recursively. We encourage you to examine the files in: ~/ViewPoint/Settings/Examples/. 

16.1 CLI String Parsing 

All white spaces are gobbled up until the beginning of a string is specified by either (i) a non-white space 
character, or (ii) a beginning quote is encountered. Quotes should be matched (this was not expected in 
previous versions). An inline double-forward-slash will cause everything remaining on the line to be 
ignored as a comment. See Chapter 18. 

16.2  Saving and Loading Settings Files  

File > Settings > Load Settings  
allows the user to read in a Settings file, using the standard open file dialog box.  
The CLI command: settingsFolder_Load folderName loads all the top level (not sub-folders) contents of the 
specified folder. Note: sub-folder contents may be allowed later, do not assume that this is a safe place 
for things that you do not want loaded! 
File > Settings > Save Settings 
allows the user to store the current settings (except window layout) to a Settings file, using the standard 
open file dialog box. 
File > Settings > Save Window Layout  
saves the size, location and z-ordering of all ViewPoint windows.  
File > Settings > Verbose Loading  
causes additional information from the CLI to be displayed in the History window.  



 
Arrington Research 

3/2/2016 
Page 98 

  Startup Folder  16.2.1

When ViewPoint starts, it automatically loads all the Settings files contained (currently only at the top 
level) in the folder named: ~/ViewPoint/Settings/Startup/. This can be used to load regularly used 
settings to reduce setup time. Small uniquely named files are recommended. 

  FinishUp Folder 16.2.2

When ViewPoint stops, it automatically loads all the (currently only top level) Settings files contained in 
the folder named: ~/ViewPoint/Settings/FinishUp/. This folder is not present in all releases, but can 
be added by the user. 

  Settings/LastRun.txt 16.2.3

When ViewPoint quits it automatically saves all the current contol settigns in the: 
~/ViewPoint/Settings/LastRun.txt file. The user may load this file manually next time ViewPoint is 
launched. This file is overwritten every time ViewPoint quits, so you must rename it if you want it saved. 
If you want to automatically load this LastRun.txt file at program startup, you can add the command  
settingsFile_Load “LastRun.txt” to the file: ~/ViewPoint/Settings/Startup/Startup.txt 

16.3  Settings File Examples 

It is often a good idea to create individual Settings files for different groups of related commands, and 
then call those Settings files from a main Settings File.  
 
Example 1: Create individual Settings files that contain the name of a bitmap image and the ROIs for 
that image. 
 
File:  imageAndRoi_1.txt 
stimulus_LoadImageFile  “picture1.bmp” 

setROI_AllOff 

setROI_RealRect  1  0.1 0.1 0.3 0.2 

setROI_RealRect  2  0.4 0.4 0.5 0.5 

 

File:  imageAndRoi_2.txt 
stimulus_LoadImageFile  “picture2.bmp” 

// This has image file has an imageROIfile associated with it.    

See section 12.8 
 

File:  startup.txt 
settingsFile_Load “imageAndRoi_1.txt” 

 
Example 2 : Create individual Settings files that set the FKey commands for a particular task 
 

File:  fkeysForCalibration.txt 



 
Arrington Research 

3/2/2016 
Page 99 

fkey_cmd  9   { calibration_selectPrevious } 

fkey_cmd  10  { calibration_snap } 

fkey_cmd  11  { calibration_selectNext } 

16.4  CLI commands  

The same Command Line Interface (CLI) is used for command strings received from:  
 

 Settings files that are loaded.  
 The SDK using the VPX_SendCommand function  
 FKey commands & TTL commands 

 
The total command line length should not exceed 255 characters. See Chapter 15 for details about 

using CLI s. 

16.5  Associating CLI s with FKeys 

CLI s can be associated with FKeys. These associations can be viewed in the Info panel menu: Help > 

Info > ShortCuts tab. Refer to 19.26.1 

16.6   Command Line Interface Window 

Select menu Windows > Command Line Interface to open a simple interface window (see Figure 39) to send 
CLI commands to ViewPoint. Recently entered commands are saved and can be scrolled using the 
up/down arrow keys. The interface allows easy cutting and pasting and line editing. The Command Line 
Interface window Parse Status: line provides feedback about CLI parsing errors; more detailed error 
reporting may be found in the History window. 
 

 Command Line Interface Figure 39.
 

 

16.7  Settings File Lists (Deprecated) 

A simple sequential state-logic is provide by allowing the user to specify a list of Settings files and 
allowing a variable time delay before loading the next file in the sequence. The Settings File List to be 
sequenced through may be set up using a group of CLI (settingsFileList_Init, etc.) described in section 
SettingsFileList   19.20. Start and control the sequencing via the menu item File > Settings > 

SettingsFileList. Hint: It is useful to assign FKey commands for these. 



 
Arrington Research 

3/2/2016 
Page 100 

Note that the SettingsFileList is deprecated and superceded by the much more powerful StateEngine 
See Chapter 15.  

 



 
Arrington Research 

3/2/2016 
Page 101 

Chapter 17. Ethernet Communication Between Computers 

The ViewPoint EyeTracker ® can communicate with other computers via Ethernet. The ViewPoint 
EyeTracker has an Ethernet server built into it.  ViewPointClient™ software can connect to this server 
and once connected it can send CLI commands to ViewPoint and it can receive data from ViewPoint.  

The interface for “layered” applications running on the remote computer is done via a dynamically 
linked library. For Microsoft Windows this is the familiar VPX_InterApp.dll; for Apple Macintosh 
computers this is via libvpx_interapp.dylib. The dynamically linked library is part of the ViewPoint 
Software Developers Kit (SDK) that contains high level functions that allow the user to seamlessly and 
easily interface their programs with ViewPoint. The ViewPointClient software and the dynamically linked 
library exchange data with layered applications just like the ViewPoint EyeTracker does on the same 
machine, but it typically takes less than one percent of CPU resources. This means that the same 
“layered” applications can be used on a remote computer just as easily as on the same computer. 

Look in the ~/ViewPoint/Interfaces/ folder for the required software. 

 Ethernet Communication  Figure 40.

 
 
 
 
 
 
 
 
 
 
 
 

 

The remote computer will of course need an Ethernet connection as well. Users are expected to 
know how to connect computers via Ethernet. In general this can be done either via an Ethernet cable, 
or a wireless internet connection to a wireless router on the local network.  



 
Arrington Research 

3/2/2016 
Page 102 

You will need to supply the ViewPointClient software with the IP address of the computer on the 
local network that is running ViewPoint and also with the port number that ViewPoint is using. By 
default ViewPoint uses port 5000. It is rarely necessary to change the port number, only if there is a 
conflict with another application, so start by leaving it as the default value. We recommend setting a 
static IP address (one that does not change); to do this, go to the Windows control panel and select 
Network Connections. If you need help with setting up the Ethernet connection please contact your 
local IT support person.  

ViewPoint usually shows the correct IP address for the computer on which it is running in the Status 
window and also under menu: Help > Info > SysInfo tab.  

Note: From the DOS Command Prompt use the command netstat to access network connection 
information, including port numbers used. For help, use netstat – h to lists all available 
commands.  

 

17.1  Ethernet Software Connections 

Successful Ethernet connection requires that both the IP Address and the Port number must match. 

 Changing the ViewPoint IP Address 17.1.1

Find the IP address of the computer on which ViewPoint is running by going to: Help > Info > SysInfo 

tab and look under NEWORK: on the Link: line. This information may also be available in the Status 
window on the Link: line.  

We recommend using a static IP address (one that does not change); to do this, go to the Windows 
control panel and select Network Connections. If you need help with setting up the Ethernet connection 
please contact your local IT support person. 

Occasionally the system provides the wrong information to ViewPoint; if there is a problem check 
the IP address listed by Windows under Network Connections. 

The current default port is 5000 and should not need to be changed unless there is a conflect.  
Extra care must be taken when there is more than one Network Inerface Card (NIC) on the 

ViewPoint computer, as problems sometimes arise and the ViewPoint software may not list the correct 
one. Rarely does the server’s IP Address need to be changed. However there may be occasions when 
multiple NIC cards are installed or there is a IP address conflict with other network connections.  
ViewPoint automatically tries to connect with the first NIC listed on the system. If the IP Address is 
changed, the server will be stopped and all client connections will be lost, then the server will be 
restarted; any clients will need to be attached again manually. This is done with the following command 
line instructions CLI: 

CLI: setIPAddress  string 
Eg:   setIPAddress “192.168.1.9” 

There is no name resolution, so you need to use the IP address not the computer name. 

 Changing the Port Number 17.1.1

The default Ethernet server port number is 5000 and should not need to be changed unless this port 
is already in use on your network. If the port is changed, the server will be stopped and all client 



 
Arrington Research 

3/2/2016 
Page 103 

connections will be lost, then the server will be restarted; any clients will need to be attached again 
manually. This is done with the following CLI: 

CLI: ethernet_setPortNumber  unsignedInteger 

For example: ethernet_setPortNumber 5001 

 Running the ViewPoint Server 17.1.2

It does not matter whether the ViewPoint or the ViewPointClient application is launched first, 
however the ViewPoint application and its built-in server must be running before the ViewPointClient 
software can attach to the server. Normally the server can remain running and should not need to be 
turned off, however if this seems necessary, it is accomplished with the following command line 
instruction: 

GUI: Check or uncheck menu: Interface > Ethernet Server  

CLI: ethernet_server  boolValue 

For example: ethernet_server Off 

 Ping Clients 17.1.3

ViewPoint can send a Ping message to all the attached clients. Each attached client should respond 
with a Pong message. This can be done with: 

 
GUI: menu item: Interface > Ping Clients  

CLI: ethernet_PingClients  
 

When ViewPoint receives a Pong response, it calculates the total round-trip time, and prints this 
time in the History window, something like this: 
 
42:32:37.929 :  : 464) PingPong: 0.217628 milliseconds round trip. 

 
This message includes a unique identifier number for each client connection. 

 Loopback 17.1.4

The ViewPoint EyeTracker server and ViewPointClient applications software can communicate with 
one another on the same machine (localhost) using the Ethernet loopback network-interface available 
at.  IPv4 reserves the entire 127 address block (127.0.0.1 through 127.255.255.254) for loopback to 
the same machine, but the name localhost usually resolves to address 127.0.0.1. When using Ethernet 
to communicate with applications on the same computer, the ViewPoint EyeTracker server and the 
ViewPointClient software must be in separate folders, each folder with their its own copy of dynamically 
linked library.  

Note that the loopback may not work with some versions of Microsoft Windows.  

 Static IP Addresses and Zero Configuration 17.1.5

If you are connecting your computers together without the help of a DHCP server (a device that assigns 
IP addresses), ViewPoint may start the server with a zero configuration IP address (169.254.0.0/16). 
You should still be able to connect the ViewPointClient using this IP Address.  However, we have seen 
some issues where the zero configuration networking doesn’t work, so we recommend assigning unique 
static IP address to both computers.   



 
Arrington Research 

3/2/2016 
Page 104 

 Firewalls 17.1.6

Many computers now run a firewall to help prevent unauthorized access. You may see a dialog box 
message similar to the one below if the computer running ViewPoint is protected by a firewall program. 
You must unblock the program, i.e., press the Unblock button, for the ViewPoint Ethernet server to 
communicate with the ViewPointClient programs. You may also need to disable any virus checking 
software. 

 Unblock Firewall Figure 41.

 
Ethernet communication will not work unless the firewall is unblocked. 

 

17.2  Ethernet Hardware Connections 

 Hub, Switch, Router, or a Crossover Cable? 17.2.1

If you already have a Hub, Switch, or Router, then any of these will work fine. If you plan to purchase 
a new one, then we suggest that you choose a Switch or Router as these are traditionally more efficient. 
Any of these will allow several computers running ViewPointClient to connect to the ViewPoint 
EyeTracker built-in server all at the same time.  

If you choose a device that has a DHCP server, like a router, then you must make sure that both 
computers are connected directly to the same router.  You cannot have computer1 connected 
to router1 while computer2 is connected to router2, this won’t work. 

 Direct Connection using Ethernet Cable. 17.2.2

If you only want to connect two computers then you can simply use an Ethernet Crossover cable, 
which does not require any kind of Hub, Switch, or Router, but simply plugs into the Ethernet port of 
each computer.  Older computers required a crossover cable but most modern computers have NIC 
cards that resolve the crossover issue and allow you to use a normal Ethernet cable. 



 
Arrington Research 

3/2/2016 
Page 105 

 

17.3 Ethernet to Microsoft Windows computers 

On the remote Microsoft Windows computer you will need a copy of the VPX_InterApp.dll and a 
copy of the ViewPointClient.exe program. (Note that this is different for the Macintosh where the 
ViewPointClient software is built into the dynamically linked library.) Generally these should be placed in 
the same folder.  

If there are multiple copies of the dynamically linked library on the computer, make sure that the 
ViewPointClient software is connecting to the same copy as the layered application that you are using, 
otherwise there will be no communication and the data will all be zeroes. 

 How to use ViewPointClient 17.3.1

 
1. Copy the ~/ViewPoint/Interfaces/Windows/ViewPointClient/ folder to the second machine. 

This folder should contain the ViewPointClient and VPX_InterApp.dll files. 
2. Start the ViewPoint EyeTracker application. This automatically starts the built in server. 
3. On the remote computer start the ViewPointClient.exe application for Microsoft Windows; you 

should see a window like the one in Figure 42. 

 

 ViewPointClient Window  Figure 42.

 
 

 
 

 
4. Enter the IP Address (E.g.: 192.168.1.101) of the computer on which ViewPoint is running (see 

section 17.1.1); do not change the Port number at this time. Click the Attach Server button.  
5. If connection was successful the button label changes to Detach. 
6. The changes the ViewPointClient application looks something like the following. That shown in 

Figure 43. 
 

Before attaching to the server, the ViewPointClient window will show the full path file name of the 
DLL that it has loaded. This can be helpful, because layered applications must use the same DLL. 

The Data field indicates the number of eye tracking data packets received. If the Data field is 0, or 
remains constant, then probably either ViewPoint is in Freeze video mode, or the ViewPoint menu item: 



 
Arrington Research 

3/2/2016 
Page 106 

Interface > Send Data > * options needs to be set to Streaming Data. The ViewPointClient Data field will 
continuously increment when it is receiving eye tracking data in real-time. ViewPoint will send Other 
data even when it is frozen, to prevent the ViewPointClient from trying to reset an interrupted 
connection. 

The Other field counts things like Status changes, Events, etc. 
The A Freq and B Freq fields are the calculated frequency from the incoming, streaming packets for 

each eye.  These values should be approximately the selected frame rate in ViewPoint. 
 

 ViewPointClient Window when attached  Figure 43.

 
 
 
 
 
 

 Windows Third Party Applications 17.3.2

The ~/ViewPoint/Interfaces/Windows/ folder contains a number of the third party application 
interfaces. Documentation for these can be found inside the specific folders. For example, you should 
find: ~/ViewPoint/Interfaces/Windows/MATLAB/ and ~/ViewPoint/Interfaces/Windows/Python/. 

There are several ways to load the VPX_InterApp.dll and use the ViewPointClient, below are the 
suggestions: 

Copy the VPX_InterApp.dll and the ViewPointClient.exe directly into the folder of the third 
party application being used.  This will allow both ViewPointClient and the third party application to 
load the same VPX_InterApp.dll. 

Some third party applications can load libraries from a full path.  If this is the case, you can have 
VPX_InterApp.dll and the ViewPointClient.exe in there own folder and you can specify the full path 
to the VPX_InterApp.dll in the third party application’s LoadLibrary call.  This will allow both 
ViewPointClient and the third party application to load the same VPX_InterApp.dll. 

Copy the VPX_InterApp.dll and the ViewPointClient.exe directly into the System32 folder.  
You need to make sure this is the only copy of VPX_InterApp.dll on this system so that you don’t 
accidently have the third party application load a different VPX_InterApp.dll.  The two methods above 
are preferred, but please note this is a viable option. 

 Layered Applications 17.3.3

The executable files for the SDK demo-applications are in the ViewPoint/ExtraApps/* folder. You 
can copy these to the second machine into the folder containing ViewPointClient and 



 
Arrington Research 

3/2/2016 
Page 107 

VPX_InterApp.dll. Run the applications just as you would if they were in the folder where ViewPoint is 
running. These include: 

 VPX_SimpleC.exe 

 VPX_Win32_Demo.exe 

 VPX_MFC_Demo.exe 

 VPX_Basic_Demo.exe 

You can also write your own layered applications to run on either machine. We recommend that you 
start with the sample code and projects in the ViewPoint/SDK/* folder.  

17.4 Ethernet to Apple Macintosh computers. 

The Ethernet interface allows ViewPoint running on a Microsoft Windows machine to send data and 
communicate with applications running on a Macintosh OSX machine.  

Copy the compressed MAC SDK .zip file from the ~/ViewPointMacX/ folder to your Macintosh 
computer. Do not unzip the file until it is on the Macintosh! (Some files may be corrupted if you 
decompressed it on the PC.)  

On the Macintosh the ViewPointClient software is built into the dynamically linked library (dylib), so 
users no longer need to run an external Client application. There are two new functions in the dylib that 
allow the user to connect to and disconnect from the ViewPoint EyeTracker server: 

 
int_ VPX_ConnectToViewPoint( char* ipAddress, int32_t port ); 

// returns: 0 = connected ok, -1 = generic fail 

// Example: ret = VPX_ConnectToViewPoint("192.168.1.9",5000); 

 

int_ VPX_DisconnectFromViewPoint(); 

// returns: 0 = disconnected ok, -1 = generic fail 

 

This dylib needs to be copied to a particular folder where applications can know to look. It also 
needs the permissions set, so that the user can access it. You will need to use the Terminal application 
to do this. The administrator (super user) password will probably be required, because the dynamic 
library needs to be moved to a low-level part of the UNIX operating system.   

 
1. Launch the Macintosh Terminal application from the Utilities folder inside the Applications folder. 

 
2. Verify that the folder /usr/local/lib/ exists by listing (ls) all the files and folders inside the 

/usr/local/ folder; at the command prompt in the Terminal window, enter: 
 

ls -l /usr/local/ 

 

3. You must create the path /usr/local/lib/ if it does not exist. You will most probably need super-
user privileges to do this (sudo), which will require the administrator password. To create the lib/ 
folder inside the /usr/local/ folder, first navigate to the /usr/local/ folder by changing the 
working directory (cd), verify that you got there by printing the path of the working directory (pwd), 
and then make a new director (mkdir) folder, finally verify that it exists:  
 



 
Arrington Research 

3/2/2016 
Page 108 

sudo cd /usr/local/ 

pwd 

sudo mkdir lib 

ls –l  

4. Copy the library libvpx_interapp.dylib into /usr/local/lib/ so that the layered apps can find 
it. The tilde stands for the rest of the path name that varies from machine to machine and typically 
includes the machine name and user name. 

 sudo cp ~/ViewPointMacX/libvpx_interapp.dylib  /usr/local/lib/ 

A quick way to get the full dylib path into the Terminal window rather than typing it in is to simply 
drag and drop the dylib file into the Terminal window. 

5. Navigate to that directory and check for the file 
 

 sudo cd /usr/local/lib/ 

 

6. Change the file access permissions: 
 

sudo chmod 755 libvpx_interapp.dylib 

When performing the above steps, it is very useful to check the file attributes before and after executing 
commands to verify files have been overwritten when copying (i.e. check for newer dates) or that the 
permissions have been changed when using the chmod command.  The command to list the file 
attributes is: 
 ls -l 

Below is an example of the before and after of using the chmod command to change the file 
permissions.  You can clearly see the permissions on the left have changed. 
 
-rwx------  1 root  wheel  285360 Mar 22 19:05 libvpx_interapp.dylib 

-rwxr-xr-x  1 root  wheel  285360 Mar 22 19:05 libvpx_interapp.dylib 

 
7. Check that everything is working correctly by running the application CommandLineTool (in some 

versions this program is named ViewPoint ClientTest). You can just double click the application 
icon. This launches another simple Terminal window based application; follow the instructions that 
are printed in the window to set the IP address, connect to ViewPoint, send a CLI command, and 
toggle the printing of streaming data, finally, disconnect form the server; for example: 

 
a:192.168.1.79 

c 

s: say “Hi from the Mac” 

i 

 
8. Using other applications, connect to ViewPoint using the SDK (or application specific wrapper to the 

SDK).  Specify the IP address as a string and the port number as an integer, for example: 
 



 
Arrington Research 

3/2/2016 
Page 109 

VPX_ConnectToViewPoint( '192.168.1.99', 5000 ); 

 

You will need to specify the IP address for the machine on which the ViewPoint application is 
running. You can find the IP address by looking under: Help > Info > SysInfo tab > Link: information. 
Note that the first argument is an ASCII string; some applications will require conversion from 
Unicode to ASCII, for example Python will probably require: '192.168.1.99'.encode(‘ascii’). 
 

9. Before quitting the remote layered program, disconnect the client from the ViewPoint server. 
VPX_DisconnectFromViewPoint(); 

 Macintosh Third Party Applications 17.4.1

You will find interfaces to various third party applications inside the ~/ViewPointMacX/ folder that 
you copied. These include ~/ViewPointMacX/MATLAB/ and in some versions 
~/ViewPointMacX/Python/. 

 Terminal Window (deprecated method?) 17.4.2

Sometimes it may be necessary to work directly from a Terminal window shell.  You can set the dylib 
path directly in the shell and run applications directly from the shell.  Please note this only works for 
the life of the Terminal window application.  Once you close it, you will have to repeat the steps listed 
below. 

1) Open a basic Terminal window. 
2) Set the dylib search path to the ViewPoint folder where libvpx_InterApp.dylib is located.  

Please note that you need to change ViewPointPath to your actual path. 
[ export DYLD_LIBRARY_PATH=/ViewPointPath ] 

A quick way to get the full ViewPoint path into the Terminal window rather than typing it in is to 
simply drag and drop the ViewPoint folder into the Terminal window.  Please note that you don’t 
want to drag and drop the dylib file because you don’t want the file name as part of the path.  
Make sure you only drag and drop the ViewPoint folder. 

3) Run the desired application in the Terminal window, i.e., the CommandLineTool application. 
Simply drag and drop the desired application into the terminal window followed by the return 
key. 
 

If these steps were not performed correctly, when trying to run the desired application you may get the 
following error indicating the application could not load the dylib.  Please try running the above steps 
again. 
 
dyld: Library not loaded: /usr/local/lib/libvpx_interapp.dylib 

Referenced from: /ViewPoint/ExtraApps/ViewPoint ClientTest 

Reason: image not found 

Trace/BPT trap 

logout 

[Process completed] 

  



 
Arrington Research 

3/2/2016 
Page 110 

17.5 Ethernet Server Error 

When ViewPoint starts up or when the server is restarted, there is the potential for the server to 
have errors when starting, thus leaving it not running. This error can be seen in the History window, 
under: Help > Info > SysInfo tab under NEWORK: on the Link: line. This information may also be available in 
the Status window on the Link: line, as shown below in Figure 44. 

 

 ViewPoint Ethernet Server ERROR  Figure 44.

 
 

The most common reasons and their solutions are listed below: 
Reason: Two NIC cards installed. 
Solution: To verify how many cards are installed use the CLI command: ethernet_listIPAddresses . 

ViewPoint prints the NIC info in the History window. Verify the appropriate NIC card and change the 
server’s IP Address (see 0). 

Reason: The port number is already in use. If you are on a network, there may be other software 
using the port or there could be another instance of ViewPoint running and that instance already has a 
server running on that port). 

Solution: Change the server’s port number (see 0). 
  



 
Arrington Research 

3/2/2016 
Page 111 

17.6   ViewPoint ClientTest - CommandLineTool 

The easiest way to test for Ethernet communication is to use the program CommandLineTool (aka 
ViewPoint ClientTest). This lightweight program establishes communication with the ViewPoint server, 
allows sending of CLI commands, and will dump some limited data to demonstrate proper 
communication. This program works on both the WindowsPC and the Apple Mac. 
------------------------------------------------------------------------------- 

ViewPoint CommandLineTool 

  - real-time Ethernet interface to the ViewPoint EyeTracker  

 

 Copyright Arrington Research, Inc. 

 www.ArringtonResearch.com 

 DLL version: 293.114014 

 SDK version: 292.010000 

 Compiled: 12:18:24 Feb 14 2012 

------------------------------------------------------------------------------- 

Commands: 

        a:192.168.1.4    a:<ipAddressString> no spaces allowed. 

        p:5000           p:<ipPortNumber> no spaces allowed, unsigned integer. 

        c                c connect to ViewPoint EyeTracker. 

        d                d disconnect. 

        i                i toggles the display of real-time streaming data. 

        s: say "Hi VP"   s:<cmd> Command Line Interface sent to ViewPoint. 

        s:client:status  CLI prefix "client:" is caught by the client library. 

------------------------------------------------------------------------------ 

file:///C:/Users/Karl%20Arrington/Dropbox/ViewPointManual/www.ArringtonResearch.com


 
Arrington Research 

3/2/2016 
Page 112 

Chapter 18. Command Line Interface (CLI) 

The CLI allow users to control almost every aspect of the program and to allow fine control of 
ViewPoint operations and behavior. There is a CLI command for every GUI control. All the CLI commands 
and their GUI equivalents are listed in chapter Chapter 19, Controls: GUI and CLI. 

CLI command help will print all the CLI command terms into the History window. The list can be 
narrowed by specifying part of the command term string as an argument, for example: help video. 

The following is a list of CLI operators and their definition. Operators follow a strict precedence 
which defines the evaluation order of expressions containing these operators.  

 

    CLI Operators Table 14.

Operator Description Usage 

EOL End of line (OS 

specific) 

Command terminator 

" double-quote 

character. 

Open and close a string argument. 

‘ single-quote 

character. 

Open and close a string argument. 

// Double forward-

slash 

Comment identifier. 

{ } Open and Close 

braces 

Begin and End (deferred) execution block 

; semicolon Command separator 

' ' '\t' ',' Space, Tab, 

Comma 

Argument delimiters 

: colon target specifier, left-to-right associativity, (no 

white spaces before the colon) 

 
 

18.1 Example of a Command Line: 
 

EyeB:autothreshold ; fkey_cmd 5 { settingsFile_Load “key 5 .txt” ; dataFile_NewUnique } 

The above line first starts the AutoThreshold process running for EyeB, and then assigns the 
expression within braces to key F5. The expression consists of two instructions that are only evaluated 
when the F5 key is pressed, that is, their evaluation is deferred. 

 



 
Arrington Research 

3/2/2016 
Page 113 

 Strings are defined by enclosing a set of characters within quotes (“x”). A string must start 
with a quote character and end with the same type of a quote character, that is, single or 
double quotes. An error will be generated if the CLI finds an unmatched quote. Quoted 
strings have highest precedence, meaning that all text, including operators, inside the 
quoted string will be shielded from evaluation. 

 Comments are text that is not evaluated; they are identified by a comment identifier, 
typically two forward slashes (//). A comment identifier tells the CLP that everything 
following on that line is to be ignored. Comment identifiers can appear anywhere on the 
line. Note that quotes have precedence, so double slashes inside a quoted string will not be 
interpreted as comment identifiers.  

 Braces provide grouping of a sequence of commands, as shown in the above example where 
the group of instructions is assigned to an Fkey. Braces should be used whenever specifying 
a command that is to have its evaluation deferred. Braces can be nested. An error will be 
generated if the CLP finds unmatched braces. 

 The colon is used as part of a target specifier. For example, when an instruction could be 
applied to one or both of eyes, it is used to specify which eye, for example: EyeA:autothreshold. 
White spaces are not allowed before the colon. 

 Delimiters separate command arguments. They include white spaces (space-bar and tab 
characters) and commas. 

 Semicolons can be used to separate multiple commands on a single line. 

18.2 Important CLI Changes from Previous Versions 

 

There are several important and significant changes from previous versions that may require 
some Settings Files to be modified. 

 
Strings must be delimited by both a beginning and an ending quote. Previously, some commands 
allowed only a beginning quote. 
Only real text strings such as file names should be put in quotes. Previously, deferred command strings 
were put in quotes. 
Deferred commands and command sequences should be put inside matching braces.  
Braces may be nested. 
Commands separated by semicolons are always evaluated in left-to-right order.  
Prefix eye target notation (e.g.: EyeB: autothreshold) is the only specification recognized. Previously, 
some commands allowed eye target specification as an optional first argument. 

18.3 Arguments 

Some commands take arguments. Valid arguments include: 
 

 Boolean: can be one of the following: yes, no, true, false, on, off, 1, 0, toggle. 



 
Arrington Research 

3/2/2016 
Page 114 

 Integer: must be numeric digits, can include { + - }; e.g.: -254. Note that the negative sign can 
also be used to specify the direction of change on TTL lines, so -0 indicates a voltage fall on 
channel 0 and +0 indicates a voltage rise on channel 0. 

 Float : must be numeric digits, can include { + - . }; e.g.: 0.75 

 String : a set of printable ASCII characters inside quotes; e.g.: "This//,that},the :other" 

 Flags: +option or –option turn various options on and off respectively.  

18.4 Asynchronous Operations 

 

Some instructions (e.g. autothreshold, autocalibrate) start asynchronous operations and return 
before the operation has completed. Incorrect assumptions about sequential execution of 
instructions may lead to errors that are difficult to debug. 

 

int running = VPX_GetStatus( VPX_STATUS_ViewPointIsRunning ); // Wait until true, so parser is running. 

int thresh  = VPX_GetStatus( VPX_STATUS_AutoThresholdInProgress ); 

int calib   = VPX_GetStatus( VPX_STATUS_CalibrationInProgress ); 

18.5 Error Detection and Reporting 

Errors are only detected and reported at the time of evaluation. There is no detection of invalid 
commands at the time of deferred command assignment; e.g.: when an Fkey_cmd is assigned. 

File name arguments are entered as strings. The validity of file names and folder paths is tested only 
when the file name is used. 

Command arguments should not be in braces unless they are deferred commands. For example:  

fkey_cmd 5 { settingsFile_Load "my file .txt" } // is valid, but  

penColor { 0 0 255 } // is invalid. 

18.6 Parameters and Arguments 

The terms 'Parameter' and 'Argument' are typically used interchangeably in everyday language. 
Technically, the parameters are the variables used when defining a command, e.g.:  

penColor  redVal  greenVal  blueVal,  
while arguments are the specific values passed when calling the command, e.g.: penColor 0 0 120. 



 
Arrington Research 

3/2/2016 
Page 115 

18.7 Using Commands  

There are many ways to issue commands to ViewPoint EyeTracker ®: 

 Interactive CLI Window 18.7.1

Select the Menu Item: Windows > Command Line Interface to raise a window in which you may issue 
CLI commands directly to Viewpoint. 

 Fkey and TTL 18.7.2

CLI commands may be associated with FKeys for user convenience, and also with TTL inputs (with 
the TTL option).  

 Settings Files 18.7.3

Every Graphical User Interface (GUI) selection and adjustment that the user makes in ViewPoint (e.g., 
menu item selection, radio button selection, slider value) can be saved in a Settings file, so that they can 
be loaded again next time the program is run. The control values are stored as single line ASCII 
commands in the form of a keyword and parameters. When a Settings file is loaded, each line in the file 
is sent to the ViewPoint Command Line Interface (CLIParser (CLP).  

 SDK/API 18.7.4

These command strings can also be sent to ViewPoint from other programs while ViewPoint is running, 
which means that outside, “layered”, programs can have complete control of the ViewPoint 
EyeTracker®. These command strings can be sent via the Software Developers Kit (SDK) function 
VPX_SendCommand (“some command string”), this can be done from programs running on the same 
machine or from programs running on remote computers via an Inter-Computer Link. 

18.8 Boolean Toggle 

All CLI s that accept BoolValue arguments (e.g.: True, False, On, Off) can also accept the argument 
Toggle, e.g., dataFile_Pause Toggle, that changes from the current state to the opposite state. 

The power of the Toggle argument cannot be overemphasized; it allows a single FKey or TTL pulse to 
do the work of two, for example, compare the costly way: 

 fkey_cmd 5 { dataFile_Pause } ; fkey_cmd 6 { dataFile_Resume } // takes two keys 

 fkey_cmd 7 { videoFreeze ON } ; fkey_cmd 8 { videofreeze OFF } // takes two keys 

to the efficient way: 
 fkey_cmd 5 { dataFile_Pause Toggle } // one key toggles Pause/Resume 

 fkey_cmd 6 { videoFreeze Toggle }    // one key toggles Freeze/UnFreeze 
 

18.9 Quoting Strings 

Literal Strings (e.g., file names, dataFile strings, etc.) can be in either single or double quotes; the 
only requirement is that the beginning and ending quotes must be the same type to match. This allows 
strings to be embedded into VPX_SendCommand arguments without using \” (escaped quotes). Previously 
only double quotes could be used to specify strings to ViewPoint.  

 



 
Arrington Research 

3/2/2016 
Page 116 

In Settings files or in the Command Line Interface window the following are equivalent: 
 

dataFile_InsertString “Say Hello” 

dataFile_InsertString ‘Say Hello’ 

 
C and C++ specify strings with double quotes; in this language the following two commands are 

equivalent, but the first one is easier to read and less prone to error: 
 

VPX_SendCommand( " dataFile_InsertString ‘Say Hello’ " ); 

VPX_SendCommand( " dataFile_InsertString \“Say Hello\” " ); 

 
MATLAB specifies strings with single quotes, so the following works well: 
 

VPX_SendCommand( ' dataFile_InsertString “Say Hello” ' ); 

 
Python uses the same rules as ViewPoint, so the string delimiters can be mixed so long as they are 

matched. 
 
The ViewPoint CLI parser (as of version 2.9.2.11) accepts any of these characters: " (straight double 

quote, aka Double Prime symbol or inches mark), “ (beginning fancy double quote), and ” (ending fancy 
double quote), as valid double quotes and any of these characters: ' (straight single quote, aka Prime 
symbol or feet mark), ‘ (beginning fancy single quote), and ’ (ending fancy single quote), as valid single 
quotes. This way the user can copy and paste the CLI commands directly from the ViewPoint UserGuide 
without any problems. However, note carefully that the quotes around the VPX_SendCommand 
argument are processed by third party compilers (e.g. VisualStudio) and interpreters (e.g. MATLAB), 
many of which will only accept straight quotes (not fancy forward and backward quotes).  

 
Note that the ViewPoint CLI parser supports only single byte ASCII characters and single byte 

character strings; it does NOT support multibyte characters such as Unicode. Consequently, some 
compiler and interpreter strings must explicitly be converted to ASCII strings. 

For example with some Python versions you may need to use the method str.encode(‘ascii’) to 
convert from Unicode to 8-bit ASCII:  
VPX_SendCommand( str('My Unicode string') ); // works on some Python versions 

VPX_SendCommand( 'My Unicode string'.encode(‘ascii’) ); // more reliable 

VPX_SendCommand( str('My Unicode string').encode(‘ascii’) ); // more reliable 

 

VPX_ConnectToViewPoint( '192.168.1.99'.encode(‘ascii’), 5000 ); 

18.10  White Spaces 

File names cannot begin with a white space. All white spaces are gobbled up until either the beginning 
of a string is specified by either a non-white space character, or a beginning quote is encountered. 



 
Arrington Research 

3/2/2016 
Page 117 

18.11 Case Insensitive CLI Strings 

The CLI strings are generally presented starting with lower case and then capitalizing the first letter of 
successive words, however the parser does not care about the case of the command strings, so you do 
not need to worry about this as a source of error. 

18.12 Embedded Special Characters 

The underscore characters in CLI commands are removed before lookup (as of version 2.9.3.115) 
so for instance, either datafileNewUnique or dataFile_NewUnique may be used. 

18.13 SDK Return Values 

All SDK functions return the integer value 1, unless otherwise specified. Check the SDK header file, 
VPX.h, for final authority; changes may appear there before the documentation can be updated. 

18.14 VPX_SendCommand & Formatted Strings 

The VPX_SendCommand function includes a va_list mechanism to handle formatted text. This means 
that it accepts both simple string arguments and also strings with formatting instructions followed by 
additional arguments, just like the C language printf and scanf functions. This is extremely convenient 
for C programming; however, some third party applications (such as MATLAB) do not provide an 
interface that will handle ahandles va_lists. To accommodate these we include the 
VPX_SendCommandString function that takes only simple string arguments. 

 
With formatted strings we can simply write: 
 

VPX_SendCommand( “stimulus_BackgroundColor %d %d %d”, r, g, b ); 

 
Without formatted strings we must write: 
 

char str[255]; 

sprintf( str, “stimulus_BackgroundColor %d %d %d”, r, g, b ); 

VPX_SendCommandString( str ); 

 
The programmer should use a precompiler conditional found inside the header file VPX.h. 
 



 
Arrington Research 

3/2/2016 
Page 118 

#ifdef _IMPORTING_INTO_MATLAB 

 #define VPX_SendCommand  VPX_SendCommandString 

#else 

 VPX_DECLSPEC int VPX_SendCommand( char* szFormat, ...); 

#endif 

18.15 TargetPrefix / EyePrefix 

Many commands allow specification of the target video stream. For example, in binocular mode you 
may want to use a command to specify something for one or the other eyes. This is accomplished by 
using an EyePrefix, for example:  [ EyeB:videoAutoImage ON ]. The prefix is separated from the command 
by a colon; no white spaces are allowed before or after the colon. 

Currently, most commands without an EyePrefix default to EyeA only, but this is not guaranteed. 



 
Arrington Research 

3/2/2016 
Page 119 

Chapter 19.  Controls: GUI and CLI 

 

19.1  General 

This chapter is the definitive reference for all Graphical User Interface (GUI) and Command Line 
Interface (CLI) controls.  These commands and controls allow users to control every aspect of the 
program, for example, to adjust the amount of data smoothing, to display / hide various pen plots, 
freeze / un-freeze the eye camera video. There are commands to open, pause, resume, and close 
ViewPoint EyeTracker® data files. 

There is a CLI command for every GUI control, in fact there are many more CLI commands than GUI 
controls.  

The Software Developer’s Kit (SDK) includes routines that allow other programs to send the CLI 
strings as well as providing access to data and other information. The SDK is described in Chapter 20. 

 

19.2  Help finding CLI commands 

 Help 19.2.1

GUI: -none- 

CLI : help 
help ”fileExtensionString” 

Default:  

CLI command help will print all the CLI command terms into the History window. The list can be 
narrowed by specifying part of the command term string as an argument, for example: help video. 

Added: 2.9.4.118 
See also: penPlot_dumpNames 

help  

help video 

VPX_SendCommand( “help color” ); 

  



 
Arrington Research 

3/2/2016 
Page 120 

19.3  Data Files 

 Specify NewUnique Data File Extension 19.3.1

GUI: -none- 

CLI : dataFile_NewUniqueExtension  ”fileExtensionString” 

Default: .txt 

Specifies the file type extension that is appended when performing the dataFile_NewUnique 
operation. This specification does not affect the format of the data inside the file. This specification does 
not affect the dataFile_NewName command. 

A dot should be included for this to correctly specify a file type, e.g. “.wks”, “.txt”, “.doc”. The file 
extension “.wks”, will usually cause the data file to be opened directly by Microsoft Excel or Microsoft 
Works spreadsheet packages. 

HINT: You can use the extension string to append a group name, e.g., “_drug_C_.wks” or 
“_MondayData.txt”. 

For help on Quoting Strings see section 18.9. 
V.2.8.1.12 CLI added. 

dataFile_NewUniqueExtension “ drug group X .xls” 

VPX_SendCommand( “dataFile_NewUniqueExtension ‘.txt’  ” ); 

VPX_SendCommand( “dataFile_NewUniqueExtension \“ patient_%d .txt\” “, pid ); 

  



 
Arrington Research 

3/2/2016 
Page 121 

 Open a Data File and Specify a File Name 19.3.2

GUI: File > Data > Unique Data File …   ^U 

Controls window > Record tab > New Recording button 

CLI : dataFile_NewUnique 

Opens a new data file with a an automatically generated unique file name. 
Use dataFile_NewUniqueExtension to specify the file extension, e.g.: “.txt”. 
The Controls window > Record tab shows the data file name and the status of the recording. 
See also: dataFile_NewName 

VPX_SendCommand( “dataFile_NewUniqueExtension ‘_patient_%d .txt’ “, pid ); 

VPX_SendCommand( “dataFile_NewUnique” ); 

 

 

 Open a Data File and Specify a File Name 19.3.1

GUI: File > Data > New Data File …   ^N 

Controls window > Record tab > New Recording button + Shift-Key 

CLI : dataFile_NewName  “fileNameString” 

Opens a new data file with a specified name. 
The GUI menu selection allows the user to specify the file name through the “New ViewPoint Data 

File” popup dialog and allows the user to specify the file name.  
The CLI command does NOT popup a dialog; it allows the user to specify the file name. A file 

extension must be included in the string otherwise none will appear, however an extension may be 
added later at the operating system level.  

The dataFile_NewUniqueExtension specification does not affect this command. 
The Controls window > Record tab shows the data file name and the status of the recording. 
The file name and path must be inside quotes. 
See also: dataFile_NewUnique  
For help on Quoting Strings see section 18.9. 

VPX_SendCommand( “dataFile_NewName ‘myData.txt’ ” ); 

VPX_SendCommand( “dataFile_NewName \“ C:\VP\Data Files\Exp 6\subj 2.wks\” ”); 

VPX_SendCommand( “dataFile_NewName \”%s\” “, dataFileName ); 



 
Arrington Research 

3/2/2016 
Page 122 

 Insert a String into the Data File 19.3.2

GUI: -none- 

CLI : dataFile_InsertString  “UserString” 

Inserts the string into the data file. The string must be inside quotes if it contains white spaces; in C 
programs the quote characters inside the command string must be escaped with backslashes. The string 
should be inside quotes. 

The string can either be inserted synchronously, i.e., at the end of the next data line (record), or 
asynchronously, i.e., on a separate line, depending upon the specification of dataFile_AsynchStringData.  

The default is asynchronous. 
When requests to insert strings are called more frequently than the data record is saved, and the 

dataFile_AsynchStringData is set to false, then the strings are concatenated. The string separator is the tab 
character. 

For help on Quoting Strings see section 18.9. 
See also: dataFile_InsertMarker, dataFile_AsynchStringData 

VPX_SendCommand(“dataFile_InsertString ‘showingPictureOfCat’ ” ); 

VPX_SendCommand(“dataFile_InsertString \“ Showing picture of a cat. \” ”); 

VPX_SendCommand(“dataFile_InsertString \”%s\” “, userString ); 

 
 



 
Arrington Research 

3/2/2016 
Page 123 

 Insert a Marker into the Data File 19.3.3

GUI: Windows > Key Pad / Data Marker 

Controls window> Record tab > Mark button 

CLI : dataFile_InsertMarker DataMarker 
 DataMarker: Any single byte visible ASCII character. 

dataFile_NextMarker 

dataFile_RestartMarkers 

Insert the specified ASCII character into the data file. This can be used for data synchronization 
coding, patient responses, etc. The marker character should not be inside any quotes. 

The marker can either be inserted synchronously, i.e., at the end of the next data line (record), or 
asynchronously, i.e., on a separate line, depending upon the specification of dataFile_AsynchStringData.  

The default is synchronous. 
The inserted character can be observed in the Seconds line graph in the PenPlot window. 
The KeyPad / DataMarker window provides an easy way to manually insert markers into the data file 

in real-time. NOTE: The KeyPad / DataMarker window must have focus (be the active window) for the 
keyboard keys to be used to insert markers. 

Note: In some versions, non-printable ASCII characters are not filtered out, so be careful if you 
specify such characters as: tab, bell, backspace, line-feed, etc.  

dataFile_NextMarker will sequence through the letters ‘A’ to ‘Z’. The sequence restarts after it gets to 
'Z'. The sequence can be reset back to ‘A’ at any time by holding the Shift-key when depressing the Mark 

button, or with the CLI command: dataFile_RestartMarkers . 
See also: dataFile_InsertString, dataFile_AsynchMarkerData 

dataFile_InsertMarker K 

VPX_SendCommand (“dataFile_InsertMarker K “); 

VPX_SendCommand (“dataFile_InsertMarker %c “, theMarker ); 



 
Arrington Research 

3/2/2016 
Page 124 

 Insert a User Defined Data Tag into the Data File 19.3.4

GUI: -none- 

CLI : dataFile_InsertUserTag  UserTagNumber  “UserString”  

 UserTagNumber:  an interger in the range 800 to 899 

This allows users to insert data from their own sources into a data file with their own specified tag.  
The tag appears in column 1 of the data file. The insertion is done asynchronously with respect to the 
eye movement data records and the insertions are uniquely time stamped. Tag identifiers must be in the 
range 800-899. 

See: Section 13.3.5 on page 77. for more details. 
For help on Quoting Strings see section 18.9. 
See also: dataFile_InsertString 

dataFile_InsertUserTag 800 "MyUserData 1 A 0.888"  

VPX_SendCommand("dataFile_InsertUserTag 800 \"MyUserData\t%d\t%d\" ", w, z ); 

 
 

 Specifies Asynchronous or Synchronous String Data 19.3.5

GUI: File > Data > Asynchronous String Data 

CLI : dataFile_AsynchStringData BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Specifies whether to insert string data asynchronously or synchronously into the data file. 
Synchronously means that this data is appended to the same line as the normal eye tracker data. 

This string data will be treated as multi-column data by using tab-characters as column separators. 
Synchronous data is usually easier to load into spread sheets or other analysis packages. If several 
Strings are inserted between eye tracker samples, the Strings will all be concatenated. If this control is 
set to Yes (i.e., Asynchronous), then each String is separately time stamped and inserted on a data line 
by itself. 

Section 13.3.3 describes synchronous vs. asynchronous operations. 
See also: dataFile_InsertString 

VPX_SendCommand( “datafile_ AsynchStringData No” ); 

 



 
Arrington Research 

3/2/2016 
Page 125 

 Specify Asynchronous or Synchronous Marker Data 19.3.6

GUI: File > Data > Asynchronous Marker Data 

CLI : dataFile_AsynchMarkerData BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default Setting: No 

Specifies whether to insert data markers asynchronously or synchronously into the data file. 
Synchronously means that this data is on the same line as the normal eye tracker data, in a separate 

column, which is usually easier to load into spread sheets or other analysis packages. If several Markers 
are inserted between eye tracker samples, the Markers will all be displayed together and more precise 
Marker time information is lost. If this control is set to Yes (i.e., Asynchronous), then each Marker event 
is separately time stamped and inserted on a data line by itself. 

Section 13.3.3 describes synchronous vs. asynchronous operations. 
See also: dataFile_InsertMarker 

VPX_SendCommand( “datafile_AsynchMarkerData Yes” ); 

 
 

 Specify Asynchronous or Synchronous Head Tracker Data  19.3.7

GUI: File > Data > Asynchronous Head Tracker Data 

CLI : dataFile_AsynchHeadData BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Available only with head tracker option 
Specifies whether to insert head tracker data asynchronously or synchronously into the data file. 
Section 13.3.3 describes synchronous vs. asynchronous operations. 

VPX_SendCommand( “dataFile_AsynchHeadData yes" ); 

 
 

 



 
Arrington Research 

3/2/2016 
Page 126 

 Specify Data File Start Time  19.3.8

GUI: File > Data > Start Data File Time At Zero 

CLI : dataFile_startFileTimeAtZero BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default 
Setting: 

Yes 

Specifies whether to start each new data file at time=0. Otherwise, the data-file will use the 
time from when the DLL was initialized, so the time values in each sequential data file will be 
increasing and represent actual elapsed time. The DLL time starts at zero when the DLL is 
launched, which is when the first program that accesses it is launched. Turning this off may be 
useful to keep track of fatigue factors or the duration of rest periods. It may also be useful 
because other programs that use the DLL time will have the same time values, which can aid in 
post-hoc synchronization of events. 

Note: version 2.9.3.120 introduces a third SDK option, SINCE_SYSTEM_INIT_TIME, but is is 
not currently implemented for the DataFile. 

See also: VPX_GetPrecisionDeltaTime 

VPX_SendCommand( “datafile_StartFileTimeAtzero No” ); 

 
 

 Include Raw Eye Data in Data File 19.3.9

GUI: File > Data > Include Raw (unmapped EyeSpace) Data 

CLI : dataFile_includeRawData BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No 

Specifies whether to store raw eye data in the data file. 

VPX_SendCommand( “datafile_includeRawData Yes” ); 

 
 

 Include Events Data File 19.3.10

GUI: File > Data > Include Events in Data File 

CLI : dataFile_ includeEvents BoolValue 
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No 

Specifies whether to store contents of the Events window into the data file. 

VPX_SendCommand( “datafile_includeEvents Yes” ); 

 



 
Arrington Research 

3/2/2016 
Page 127 

 Specify Whether to Use DataFile Buffering (DEPRECATED)  19.3.11

GUI: -removed- 

CLI : dataFile_UseBuffering  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

DEPRECATED  
Allows selection between (Yes) buffers the data in RAM before saving to disk or (NO 

immediately write to disk each data record. Because previous versions MSWindows were quite 
unstable, many users preferred to turn buffering off, so that data was not lost in the event of a 
system or program crash; this did however sometimes incur a slower sampling rate. In general 
this is neither required nor recommended with most new operating systems. 

VPX_SendCommand( “dataFile_UseBuffering No” ); 

 
 

 Pause Writing of Data to File  19.3.12

GUI: File > Data > Pause Data Capture (toggle)    ^P  

Controls window > Record tab > Pause/Resume button 

CLI : dataFile_Pause BoolValue 
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle  
dataFile_Resume     // No arguments. 

Pauses the writing of data to an open data file. Inserts a “+” marker into the data file when 
paused and inserts a “=” marker at time resumed. Because of the MSWindows overhead for 
opening and closing files, the user may prefer pausing and resuming to opening and closing. 
Also, pause may be set before the file is opened, such that the overhead delays for opening the 
file are finished before the start of the experiment.  

The Controls window > Record tab shows the data file paused state. 
The CLI command dataFile_Pause accepts a Boolean argument allowing for the CLI instruction 

dataFile_Pause Toggle to toggle pause on and off with a single instruction. 
See also:  videoFreeze,  dataFile_UnpauseUponClose,  videoFreezeSync   

FKey_cmd 9 { dataFile_Pause Toggle } 

VPX_SendCommand( “dataFile_Pause OFF” ); 

VPX_SendCommand( “dataFile_Resume” ); 

 



 
Arrington Research 

3/2/2016 
Page 128 

 Opening Data File in Paused State  19.3.13

GUI: -none- 

CLI : dataFile_UnpauseUponClose  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes   (as of version 2.8.4.569) 

Closing a DataFile (as of version 2.8.4.569) removes the paused state; with this new 
behavior if the user wants the next dataFile to start paused, the Pause button will need to be 
pressed again. For backward compatibility, the previous behavior can be reinstated by 
specifying false. 

VPX_SendCommand( “dataFile_UnPauseUponClose  False” ); 

 
 

 Close Data File  19.3.14

GUI: File > Data > Close Data File  ^W  

Controls window > Record tab > Close button 

CLI : dataFile_Close 

Closes a data file if one is open, regardless of the Paused state. 
The Controls window > Record tab shows the current data file state. 
See also: dataFile_CloseAndAnalyze 

VPX_SendCommand( “dataFile_Close” ); 

 
 

 Close Data File and Open in Post-Hoc Analysis tool  19.3.15

GUI: File > Data > Close and Analyze Data File  Alt-Shift-W 

Controls window > Record tab > Analyse button 

CLI : dataFile_CloseAndAnalyze 

Closes a data file if one is open, regardless of the Paused state, and automatically launches 
the specified data analysis program with the last data file loaded in. The default data analysis 
program is: “~/ViewPoint/DataAnalysis.exe”, but this can be changed using CLI: 
dataAnalysisApp 

The Controls window > Record tab shows the current data file state. 

VPX_SendCommand( “dataFile_CloseAndAnalyze” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 129 

 DataAnalysis Application  19.3.1

GUI: -none- 

CLI : dataAnalysisApp  “fileNameString” 

The default data analysis program is: “~/ViewPoint/DataAnalysis.exe”, but this can be changed 
using CLI: dataAnalysisApp 

VPX_SendCommand("dataAnalysisApp ‘C:/ARI/anotherAnalysis.exe’ "); 

VPX_SendCommand("dataFile_CloseAndAnalyze"); 

 

19.4  Corrected Data 

 Geometry Window  19.4.1

GUI: Stimuli > Geometry Setup …     Ctrl-G 

CLI : setWindow Geometry Show 

Raises the Geometry window. 
The tabs in this widow can be selected using the following: 

    geometryTab 2D;  geometryTab parallax;  geometryTab pupilScale 

VPX_SendCommand(“setWindow Geometry Show; geometryTab pupilScale” ); 

 
 

 Geometry Measurement  19.4.2

GUI: Geometry window > 2D tab > Sliders      

CLI : geoViewDistance IntValue  
geoVerticalMeasure IntValue 
geoHorizontalMeasure IntValue 

These CLI commands allow the user to set the measured values for the stimulus geometry 
calculations.  

Generally these are considered to be in millimeters, but they could be in any unit so long as they are 
all the same units. 

VPX_SendCommand( “geoViewDistance 50” ); 

VPX_SendCommand( “geoVerticalMeasure 500” ); 

VPX_SendCommand( “geoHorizontalMeasure 400” ); 

 



 
Arrington Research 

3/2/2016 
Page 130 

 Geometry Grid Spacing  19.4.1

GUI: -none-    

CLI : gridSpacing  floatMinor  floatMajor  
 floatMinor, floatMajor: floating point numberers 

Specifies the grid spacing to be viewed in the GeometryGrid. 

gridSpacing 2.5 10  

// sets the minor axes every 2.5 degrees, major axes every 10 degrees 

VPX_SendCommand(“gridSpacing 2.5 10” ); 

 

 GeometryGrid Lines Display 19.4.2

GUI: Controls window > Display tab > GeometryGrid check boxes   

CLI : GazeSpaceGraphicsOptions +Grid   

StimulusGraphicsOptions +Grid   

SceneMovieGraphicsOptions +Grid   

 

Specifies the display of the GeometryGrid on the GazeSpace window, Stimulus window, or the 
SceneMovie when available. Use minus sign to remove, eg: -Grid 

VPX_SendCommand(“SceneMovieGraphicsOptions +Grid” ); 

 

 Specify Amount of Parallax Correction 19.4.1

GUI: Geometry window > Parallax tab > Slope slider 

CLI : parallaxCorrection_Slope  float  
in range -2.0 to 2.0 

Default: 0.82 

This command sets the amount of parallax correction.  Only applicable to the Binocular 
SceneCamera systems. Refer to 9.2 

VPX_SendCommand ( “parallaxCorrection_Slope 0.8” ); 

 

 

 

 



 
Arrington Research 

3/2/2016 
Page 131 

 Inter-Pupillary Distance (IPD) Measure 19.4.1

GUI: -none- 

CLI : ipdMeasure millimeters  in range 1.0 to 99.0 

Default: 60 

Accurate calcuation of 3D GazePoint and 3D Vergence calculations require accurate ipdMeasure, 
geoHorizontalMeasure, geoVerticalMeasure and geoViewingDistance measurements be set. 
 
Note that ViewPoint assumes that the vertical eyeball position is at the vertical center of the Stimulus or 
SceneCamera window.  For more flexability, use 3DViewPoint or 3DWorkSpace products.  
 
Adult Human Male USA: 55mm – 70mm (5th -95th percentile) 
Adult Human Female USA: 53mm – 65mm (5th -95th percentile) 
Human Child USA: 41mm – 55mm (low to high) 

 
2.9.3.121 argument changed from integer to float. 

VPX_SendCommand ( “ipdMeasure 59.5” ); 

 

 Pupil Diameter Calibration 19.4.1

GUI: Geometry window > PupilScale tab > [ Set EyeA ] and [ Set EyeB ] buttons 

CLI : EyeA:pupilScaleFactor  float  
EyeB:pupilScaleFactor  float  

in range -2.0 to 2.0 

Default: 0.82 

The Pupil Scale Factor is used that convert normalized units to millimeters and the resulut will not be 
correct unless this calibration is performed correctly in advance.  

See: VPX_GetPupilDiameter2 

VPX_SendCommand ( “parallaxCorrection_Slope 0.8” ); 

 



 
Arrington Research 

3/2/2016 
Page 132 

19.5  Stimulus Images 

 Load Stimulus Image into the Stimulus window  19.5.1

GUI: File > Images > Load Image                ^I  

CLI : stimulus_LoadImageFile fileName 

Loads the selected image into the Stimulus window.  
For help on Quoting Strings see section: 18.9. 
See also: stimulusGraphicsOptions +Image 

VPX_SendCommand( “stimulus_LoadImageFile catPicture.bmp ” ); 

VPX_SendCommand( “stimulus_LoadImageFile \”second cat picture .bmp\” ” ); 

VPX_SendCommand( “stimulus_LoadImageFile %s”, bitmapFileName ); 

 
 
 

 Specifies How to Display the Currently Loaded Stimulus Image 19.5.2

GUI Stimuli > Image Shape > shape type 

CLI : stimulus_ImageShape ShapeType 

 ShapeType: Actual, Centered, Fit, Isotropic 

Default: Fit 

Specifies how the bitmap image is to be displayed in the Stimulus and GazeSpace windows. 
Actual: Displays the image at actual size with the top-left corner of the image positined at the top-

left corner of the display window. 
Centered: Displays the image at actual size and centered in the window. 
Fit: Displays the image stretched un-equally to fit the window. 
Isotropic: Displays the image stretched equally in all directions, so as to maintain the original 

proportions, i.e., the original aspect ratio of the image. This may leave window background ("matting") 
color between edges of the picture and the edges of the window. The color of this area can be specified 
with the command: stimulus_BackgroundColor. Note: the GazeSpace window may automatically resize to 
accommodate. 

See also:  stimulus_BackgroundColor  VPX_STATUS_StimulusImageShape 

VPX_SendCommand( “stimulus_ImageShape Isotropic” ); 

 



 
Arrington Research 

3/2/2016 
Page 133 

 Specify a Background “Matting” Color for the Stimulus Window  19.5.3

GUI: Stimuli > Background Color 

CLI : stimulus_BackgroundColor  intRed  intGreen  intBlue 

intRed 0-255  intGreen 0-255  intBlue 0-255 

Sets the background ("matting") color for use when ImageShape is not set to Fit and there is space at 
the sides or at the bottom of the image. 

See also:  stimulus_ImageShape 

stimulus_BackgroundColor 255 0 0 // set to BRIGHT RED 

VPX_SendCommand ( “stimulus_BackgroundColor 255 135 75” ); 

 

 Stereoscopic Display (Side-by-Side)  19.5.4

GUI: -none- 

CLI : stereoDisplay BoolValue 

stereoSwapImages BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

For displaying a single stimulus image on a 3D display device that expects a side-by-side stereo 
image format.  

Two identical side-by-side images are created from the current loaded stimulus image for display in 
the Stimulus window and in the GazeSpace window as a stereo pair. 

Two sets of calibration StimulusPoints are displayed, one for each eye, each of the side-by-side 
frames. These can be different, in the case of Partial Binocular Overlap, see 8.12.4.2. 

New: 2.8.3.40 

VPX_SendCommand ( “stereoDisplay YES” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 134 

 Play specified Sound File  19.5.5

GUI: -none- 

CLI : stimulus_PlaySoundFile soundFileName 

Plays the specified sound file. May be used as an auditory cue. If the string contains spaces it must 
be in quotes. e.g. stimulus_PlaySoundFile "Yes.wav".  

For help on Quoting Strings see Section: 18.9  
This feature may cause a media/audio player to open, if this happens, check your computer settings. 

If this problem persists, try using midi notes. 

stimulus_PlaySoundFile ”a very loud meow .wav” 

VPX_SendCommand( “stimulus_PlaySoundFile ‘meow.wav’ ” ); 

VPX_SendCommand( “stimulus_PlaySoundFile \”a very loud meow .wav\” ” ); 

VPX_SendCommand( “stimulus_PlaySoundFile \”%s\” ”, soundFileName ); 



 
Arrington Research 

3/2/2016 
Page 135 

19.6  PictureList 

See 12.2 for a description of PictureLists. 

 Initialize Picture List  19.6.1

GUI: -none- 

CLI : pictureList_Init 

Initializes the list for stimulus images, making it ready for new names to be entered. 

VPX_SendCommand( “pictureList_Init” ); 

 
 

 Add New Image Name to Picture List  19.6.2

GUI: -none-  

CLI : pictureList_AddName imageFileName 

Adds an image file name to the picture list. 
pictureList_AddName ”picture of cat .bmp” 

VPX_SendCommand ( “pictureList_AddName ‘picture of cat .bmp’ ” ); 

VPX_SendCommand ( “pictureList_AddName \“%s\” ”, imageFileName ); 

 
 

 Randomize List of Images in the Picture List  19.6.3

GUI: File > Images > Picture List > Randomize PictureList       

CLI : pictureList_Randomize 

Randomizes the pointers in the picture list. Repeat this to re-randomize. 

VPX_SendCommand( “pictureList_Randomize”); 

 
 

 Move to Next Image in the PictureList  19.6.4

GUI: File > Images > PictureList > Next PictureList Image  ^F12 (default) 

CLI : pictureList_ShowNext 

Moves to the next file pointer in the picture list. 

VPX_SendCommand ( “pictureList_ShowNext” ); 

 



 
Arrington Research 

3/2/2016 
Page 136 

 Move to Start of Images in Picture List  19.6.5

GUI: File > Images > PictureList > Restart PictureList 

CLI : pictureList_Restart 

Re-sets the pointer to the first image in the list. This does not un-randomize or re-randomize if the 
list has been randomized. 

VPX_SendCommand ( “pictureList_Restart” ); 

 
 

 Picture List End Action 19.6.6

GUI: -none-  

CLI : pictureList_EndAction 

Specifies a command to be executed when the end of the picture list is reached. 

VPX_SendCommand ( “pictureList_EndAction {stateJump 5}” ); 

 
 

19.7  Controls Window: EyeImage 

The tabs in the Controls window can be selected using the following: 
controlsTab EyeA 

controlsTab EyeB 

controlsTab Scene 

controlsTab Criteria 

controlsTab Display 

controlsTab Regions 

controlsTab Record 

 



 
Arrington Research 

3/2/2016 
Page 137 

 Specify Mapping Feature  19.7.1

GUI: Controls Window > EyeA or EyeB tab > Feature Method pull down list 

CLI : mappingFeature Method //sets Eye A 

EyeA:mappingFeature Method 

EyeB:mappingFeature Method 

  Methods: Pupil, Glint, Vector, SlipComp 

Default: Pupil 

Controls what type of mapping will be done from EyeSpace to GazeSpace for the specified eye. 
Slip Compensation provides a means to compensate for HMD slippage. 

VPX_SendCommand ( “mappingFeature pupil” ); // Eye A 

VPX_SendCommand ( “EyeA:mappingFeature vector” ); 

VPX_SendCommand ( “EyeB:mappingFeature vector” ); 

- 

 AutoThreshold  19.7.2

GUI: Controls window > EyeA or EyeB tab > Threshold Group > Autothreshold button 

CLI : autoThreshold // Eye A 

EyeA:autoThreshold 

EyeB:autoThreshold 

Tries to automatically set desirable glint and pupil threshold levels for the specified eye based on the 
current eye image. For continuous threshold adjustment use positiveLock. 

VPX_SendCommand ( “autoThreshold”); // Eye A 

VPX_SendCommand ( “EyeA:autoThreshold); 

VPX_SendCommand ( “EyeB:autoThreshold” ); 

- 

 Positive Lock Tracking  19.7.3

GUI: Controls window > EyeA or EyeB tab > Threshold group > Positive-Lock Threshold-Tracking 

checkbox 

CLI : positiveLock   BoolValue //sets Eye A 

EyeA:positiveLock   BoolValue 

EyeB:positiveLock   BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: On 

Continuous automatic feature threshold adjustment for the specified eye. 

VPX_SendCommand ( “positiveLock ON” ); // Eye A 

VPX_SendCommand ( “EyeB:positiveLock ON” ); 

- 



 
Arrington Research 

3/2/2016 
Page 138 

 Adjust Pupil Threshold Slider  19.7.4

GUI: Controls window > EyeA or EyeB tab > Threshold Group > Pupil Threshold slider 

CLI : pupilThreshold NormalizedValue // Eye A 

EyeA:pupilThreshold NormalizedValue  

EyeB:pupilThreshold NormalizedValue  

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: 0.25, but autoThreshold at startup may change this 

Sets the image intensity threshold for the specified eye such that the pupil can be segmented from 
the rest of the image. The assumption is that the pupil is darker than the rest of the image within the 
PupilScanArea. For binocular systems, the user may specify this value separately for each eye.  

The value zero represents black, the lowest pixel intensity possible, and the value one represents 
white, the highest pixel intensity possible. 

See also:  autoThreshold 

VPX_SendCommand ( “pupilThreshold 0.7” ); // eye A 

VPX_SendCommand ( “EyeA:pupilThreshold 0.7” ); 

VPX_SendCommand ( “EyeB:pupilThreshold 0.7” ); 

 

-



 
Arrington Research 

3/2/2016 
Page 139 

 Adjust Glint Threshold Slider  19.7.5

GUI: Controls window > EyeA or EyeB tab > Threshold Group > Glint Threshold slider 

CLI : glintThreshold NormalizedValue // Eye A 

EyeA:glintThreshold NormalizedValue 

EyeB:glintThreshold NormalizedValue 

 NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: 0.88, but AutoThreshold at startup may reset this 

Sets the image intensity threshold for the specified eye such that the glint (aka, corneal reflection, 
corneal reflex, or 1st Purkinje image) can be segmented from the rest of the image. The assumption is 
that the glint is brighter than the rest of the image within the GlintScanArea. For binocular systems, the 
user may specify this value separately for each eye.  

The value zero represents black, the lowest pixel intensity possible, and the value one represents 
white, the highest pixel intensity possible. 

See also: 
autoThreshold 

VPX_SendCommand ( “glintThreshold 0.6” ); // Eye A 

VPX_SendCommand ( “EyeA:glintThreshold 0.6” ); 

VPX_SendCommand ( “EyeB:glintThreshold 0.6” ); 

 
 

 Adjust Video Image Brightness  19.7.6

GUI: Controls window > EyeA or EyeB tab > Video Group > Brightness slider 

CLI : videoImageBrightness NormalizedValue // sets EyeA 

EyeA:videoImageBrightness NormalizedValue 

EyeB:videoImageBrightness NormalizedValue 

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: - varies - 

Sets the video image brightness level of the specified eye, normalized from 0.0 to 1.0. 

VPX_SendCommand( “videoImageBrightness 0.5” ); //sets EyeA 

VPX_SendCommand( “EyeA:videoImageBrightness 0.5” ); 

VPX_SendCommand( “EyeB:videoImageBrightness 0.5” ); 

 



 
Arrington Research 

3/2/2016 
Page 140 

 Adjust Video Image Contrast 19.7.7

GUI: Controls window > EyeA or EyeB tab > Video Group > Contrast slider 

CLI : videoImageContrast NormalizedValue // sets EyeA 

EyeA:videoImageContrast NormalizedValue 

EyeB:videoImageContrast NormalizedValue 

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: - varies - 

Sets the video image contrast level of the specified eye, normalized from 0.0 to 1.0. 

VPX_SendCommand( “videoImageContrast 0.7” ); //sets Eye A 

VPX_SendCommand( “EyeA:videoImageContrast 0.7” ); 

VPX_SendCommand( “EyeB:videoImageContrast 0.7” ); 

 
 

 Dynamically Optimize Brightness and Contrast Settings 19.7.8

GUI: Controls window > EyeA or EyeB tab > Video Group > AutoImage checkbox 

CLI : videoAutoImage BoolValue 

EyeA:videoAutoImage BoolValue 

EyeB:videoAutoImage BoolValue 

Default: On 

Continuously adjusts the video image brightness and contrast levels to optimal values for the 
specified eye.  

Note 1: Only the region within the pupil scan area is examined, the pupil scan area rectangle must 
be of sufficient size for the algorithm to sample a range of gray levels, otherwise the algorithm will fail. 

Note 2: The algorithm is under development and may change without notice. 

VPX_SendCommand( “videoAutoImage On” ); // sets Eye A 

VPX_SendCommand( “EyeA:videoAutoImage On” ); 

VPX_SendCommand( “EyeB:videoAutoImage On” ); 

  



 
Arrington Research 

3/2/2016 
Page 141 

 Adjust Pupil Scan Density 19.7.9

GUI: Controls window > EyeA or EyeB tab > Threshold group > Pupil Scan Density slider 

CLI : pupilScanDensity IntValue // sets Eye A 

EyeA:pupilScanDensity IntValue 

EyeB:pupilScanDensity IntValue 

  IntValue: integer in range 1 to 20 

Default: 7  with: pupilSegmentationMethod Ellipse 

The value specifies the pixel sampling interval for the Threshold Segmentation Operation for the 
specified eye. The value 1 indicates to sample every pixel. The value 2 indicates to sample every other 
pixel in both x and y directions, so one fourth as many pixels are sampled with a setting of 2 as with a 
setting of 1. Etc. 

Caution: Normally there is no need to sample very densely and doing so will greatly burden the CPU. 
For the GUI interface the slider has a default minimum value greater than 1 to avoid CPU overload. This 
default minimum may be changed with the CLI: minimumPupilScanDensity . 

Note: previous versions provided for either a normalized floating point value in the range (0.0 – 1.0), 
or an integer in the range 1 – 20, however the normalized floating point values are no longer supported. 
There is no confusion with the value 1, because the minimum sampling interval of integer 1 and the 
maximum normalized density (1.0) are opposite ways of looking at the same thing. 

See also: minimumPupilScanDensity  pupilSegmentationMethod 

VPX_SendCommand ( “pupilScanDensity 5” ); // seys Eye A 

VPX_SendCommand ( “EyeA:pupilScanDensity 5” ); 

VPX_SendCommand ( “EyeB:pupilScanDensity 5” ); 

 
 

 Override Pupil Scan Density Minimum 19.7.10

GUI: -none- 

CLI : minimumPupilScanDensity DensityIndex // sets Eye A 

EyeA:minimumPupilScanDensity DensityIndex 

EyeB:minimumPupilScanDensity DensityIndex 

DensityIndex: Integer in range1 to 20, depending upon max density chosen. 

Default: 5  but depends upon pupilSegmentationMethod 

Overrides the minimum pupil scan density allowed on the Controls window > Threshold group > Pupil 

slider for the specified eye  
Fine sampling is rarely required and not generally recommended. 

WARNING: Setting the scan density too fine can create a huge burden on the CPU and possibly 
lock-out use of the GUI. 

VPX_SendCommand ( “minimumPupilScanDensity 12” ); // sets Eye A 

VPX_SendCommand ( “EyeA:minimumPupilScanDensity 12” );  

VPX_SendCommand ( “EyeB:minimumPupilScanDensity 12” ); 



 
Arrington Research 

3/2/2016 
Page 142 

 Adjust Glint Scan Density 19.7.11

GUI: Controls window > EyeA or EyeB tab > Threshold Group > Glint Scan Density slider 

CLI : glintScanDensity IntValue // sets Eye A 

EyeA:glintScanDensity IntValue 

EyeB:glintScanDensity IntValue 

IntValue: integer in range 1 to 20 

Default: 2 or 3, depending on glintSegmentationMethod 

The argument specifies the pixel sampling interval for the glint threshold segmentation operation 
for the specified eye. The value 1 indicates to sample every pixel. The value 2 indicates to sample every 
other pixel in both the x and y directions, so one fourth as many pixels are sampled as with a setting of 
1. Etc. 

The glint is usually much smaller than the pupil, so finer sampling is expected. 
Caution: Normally there is no need to sample very densely and doing so will greatly burden the CPU. 

For the GUI interface the slider has a default minimum value greater than 1 to avoid CPU overload. This 
default minimum may be change with the CLI: minimumGlintScanDensity. 

Note: Previous versions provided for either a normalized floating point value in the range (0.0 – 1.0), 
or an integer in the range 1 – 20; however the normalized floating point values are no longer supported. 
There is no confusion with the value 1, because the minimum sampling interval of integer 1 and the 
maximum normalized density (1.0) are opposite ways of looking at the same thing. 

See also:  minimumGlintScanDensity  glintSegmentationMethod 

VPX_SendCommand ( “glintScanDensity 5” ); // sets Eye A 

VPX_SendCommand ( “EyeA:glintScanDensity 5” ); 

VPX_SendCommand ( “EyeB:glintScanDensity 5” ); 



 
Arrington Research 

3/2/2016 
Page 143 

 

 Override Glint Scan Density Minimum 19.7.12

GUI: -none- 

CLI : minimumGlintScanDensity DensityIndex // Sets Eye A 

EyeA:minimumGlintScanDensity DensityIndex 

EyeB:minimumGlintScanDensity DensityIndex 

DensityIndex: Integer in range 1 to 20, depending upon max density chosen. 

Default: 1 or 3, depending on glintSegmentationMethod 

Overrides the minimum glint scan density allowed on the Controls window > Threshold group > Glint 

slider for the specified eye. 
Note: This is not normally required and small scan density values can over burden the CPU. 
See also:  glintScanDensity  glintSegmentationMethod 

VPX_SendCommand ( “minimumGlintScanDensity 3” ); // sets Eye A 

VPX_SendCommand ( “EyeA:minimumGlintScanDensity 3” ); 

VPX_SendCommand ( “EyeB:minimumGlintScanDensity 3” ); 

 

19.8  EyeCamera Window  

 

 Adjust Pupil Scan Area 19.8.1

GUI: EyeCamera window , EyeCamera toolbar , Top button 

Drag mouse in window to define the pupil scan area rectangle 

CLI : pupilScanArea  L T R B // sets eye A 

EyeA:pupilScanArea  L T R B  

EyeB:pupilScanArea  L T R B  

L T R B: Normalized floating point values for the four sides. 

Default: 0.200 0.200 0.800 0.800 

Defines the scan area for the pupil of the specified eye. The four values are the floating point 
coordinates (0.0 – 1.0) of the bounding rectangle, listed in the order: Left, Top, Right, and Bottom. 

VPX_SendCommand ( “pupilScanArea 0.3 0.2 1.0 0.4” ); // sets eye A 

VPX_SendCommand ( “EyeA:pupilScanArea 0.3 0.2 1.0 0.4” ); 

VPX_SendCommand ( “EyeB:pupilScanArea 0.3 0.2 1.0 0.4” ); 

 



 
Arrington Research 

3/2/2016 
Page 144 

 Pupil AutoCenter 19.8.2

GUI: -none- 

CLI : pupilAutoCenter  BoolValue  // sets eye A 

EyeA: pupilAutoCenter  BoolValue   

EyeB: pupilAutoCenter  BoolValue   

Default: Off 

Attempts to automatically keep the pupil in the center of the EyeCamera window. 
Only available on some camera models and in some videoModes. 
Note 1: The mappingFeature must be set to Vector. 
Note 2: Requires digital camera (e.g. USB-220). 
Note 3: The algorithm is under development and may change without notice. 
See also: mappingFeature 

VPX_SendCommand ( “mappingFeature Vector;  pupilAutoCenter ON” );  

 
 

 Specify Pupil Scan Area Shape 19.8.3

GUI: -none- 

CLI : pupilScanShape ScanShapeType // sets Eye A 

EyeA:pupilScanShape ScanShapeType 

EyeB:pupilScanShape ScanShapeType 

ScanShapeType: Rectangle, Ellipse. 

Default: Elliptical 

Specifies whether to change the scan area for the pupil to either rectangular or elliptical for the 
specified eye. Elliptical scan area is effective at eliminating dark spots that the software interprets as a 
pupil,  

Note: The overlay graphics do not change; the bounding rectangle for the ellipse or for the rectangle 
itself is drawn and appear the same.  To see the ellipse (i) show the threshold dots, (ii) 
maximize/minimize the threshold, (iii) make entir image dark.  

VPX_SendCommand( “pupilScanShape Ellipse” ); // sets Eye A 

VPX_SendCommand( “EyeA:pupilScanShape Ellipse” ); 

VPX_SendCommand( “EyeB:pupilScanShape Ellipse” ); 

 



 
Arrington Research 

3/2/2016 
Page 145 

 Pupil and Glint Oval Fit Constraints 19.8.4

GUI: -none- 

CLI : pupilConstrained BoolValue // Sets Eye A 

EyeB:pupilConstrained BoolValue 

 

glintConstrained BoolValue 

EyeB:glintConstrained BoolValue 

Default: Yes (in most versions) 

Controls whether or not the Pupil (glint) Oval fit is allowed to extend beyond the scan area rectangle 
in the EyeSpace window. 

VPX_SendCommand( “pupilConstrained False” ); 

VPX_SendCommand( “glintConstrained True” ); 

 
 

 Define Glint Scan Area 19.8.5

GUI: EyeCamera window , EyeCamera toolbar , Third button  

Drag mouse in window to define the glint scan area rectangle 

CLI : glintScanSize width height // Eye A 

EyeA:glintScanSize width height 

EyeB:glintScanSize width height 

width height : Normalized floating point coordinates. 

Default: 0.400 0.200 

Defines the width and height of the Glint Scan Area for the specified eye.  
The two values are the normalized floating point width (X) and height (Y) values of the scan area 

bounding rectangle. The glint scan area rectangle is centered at the glintScanOffset vector. 

VPX_SendCommand ( “glintScanSize 0.4 0.3” ); // sets Eye A 

VPX_SendCommand ( “EyeA:glintScanSize 0.4 0.3” );  

VPX_SendCommand ( “EyeB:glintScanSize 0.4 0.3” );  

 



 
Arrington Research 

3/2/2016 
Page 146 

 Define Offset of Glint Scan Area Relative to the Pupil 19.8.6

GUI: -none- 

CLI : glintScanOffset X Y // sets eye A 

EyeA:glintScanOffset X Y  

EyeB:glintScanOffset X Y  

X Y: Normalized floating point coordinates. 

Default: 0.010 0.080 

Defines offset of the Glint Scan Area relative to the center of the pupil. 
The two values are the normalized coordinates of the offset vector from the center of the pupil to 

the center of the Glint Scan Area. 
See also:  video_yokedGlint NO;  glintScanUnYokedOffset 

VPX_SendCommand ( “glintScanOffset -0.05 0.1” ); // sets eye A 

VPX_SendCommand ( “EyeA:glintScanOffset -0.05 0.1” ); 

VPX_SendCommand ( “EyeB:glintScanOffset -0.05 0.1” ); 

 
 

 Unyoke Glint Scan Area from the Pupil 19.8.7

GUI: -none- 

CLI : video_yokedGlint BoolValue //sets EyeA 

EyeA:video_yokedGlint BoolValue 

EyeB:video_yokedGlint BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Allows the Glint Scan Area to be unyoked from the pupil of the specified eye. i.e. the Glint Scan Area 
does not move with the pupil. Special applications only.  

See also:  glintScanUnYokedOffset  glintScanOffset  

VPX_SendCommand( “video_yokedGlint On” ); // Eye A 

VPX_SendCommand( “EyeA:video_yokedGlint On” ); 

VPX_SendCommand( “EyeB:video_yokedGlint On” ); 

 



 
Arrington Research 

3/2/2016 
Page 147 

 Define Offset of Unyoked Glint Scan Area 19.8.8

GUI: -none- 

CLI: glintScanUnYokedOffset X Y // Sets Eye A 

EyeA:glintScanUnYokedOffset X Y 

EyeA:glintScanUnYokedOffset X Y 

X Y: Normalized floating point coordinates. 

Defines offset of the Glint Scan Area relative to the upper left hand corner of the EyeCamera 
window for the specified eye.  

The two values are the normalized coordinates of the offset vector.  
See also:   video_yokedGlint 

VPX_SendCommand ( “glintScanUnYokedOffset 0.1 –3.0” ); 

VPX_SendCommand ( “EyeA:glintScanUnYokedOffset 0.1 –3.0” ); 

VPX_SendCommand ( “EyeB:glintScanUnYokedOffset 0.1 –3.0” ); 

 
 

 Toggle Show Threshold Dots On / Off 19.8.9

GUI: EyeCamera window , EyeCamera toolbar , Fifth Button 

CLI : showThresholdDots   BoolValue  

EyeA:showThresholdDots   BoolValue 

EyeB:showThresholdDots   BoolValue // sets Eye A 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Specifies whether the image segmentation dots are displayed in the EyeCamera window for the 
specified eye. 

VPX_SendCommand ( “showThresholdDots No” ); // sets eye A 

VPX_SendCommand ( “EyeA:showThresholdDots No” ); 

VPX_SendCommand ( “EyeB:showThresholdDots No” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 148 

 EyeImage Overlay Graphics to Layered App 19.8.10

GUI: -none- 

CLI : vpx_EyeCameraImageOverlays StringArg 

StringArg : +Eye_A –Eye_A +Eye_B –Eye_B 

EXPERIMENTAL: This functionality is under development and may not be stable over future versions. 
This only affects the overlay graphics in the remote eye image that is sent to a layered SDK 

application with the SDK function VPX_SetEyeImageWindow. It does not affect the EyeCamera window 
within ViewPoint. Also, this does not effect the display of the segmentation dots; to remove these dots 
from both ViewPoint and the layered SDK application, use CLI:       showThresholdDots . 

Carefully note, the CLI and the SDK names are spelled differently. ;  
See also:  VPX_SetEyeImageWindow 

VPX_SendCommand ( “vpx_EyeCameraImageOverlays off” ); 

 
 

 EyeCamera Tool Bar Display 19.8.11

GUI: -none- 

CLI : videoToolBar BoolValue // sets Eye A 

EyeA:videoToolBar BoolValue 

EyeB:videoToolBar BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Specifies whether to display the EyeCamera window toolBar for the specified eye. 

VPX_SendCommand( “videoToolBar off”); // sets eye A 

VPX_SendCommand( “EyeA:videoToolBar off”); 

VPX_SendCommand( “EyeB:videoToolBar off”); 

 
 
 
 



 
Arrington Research 

3/2/2016 
Page 149 

19.9  Slip Compensation 

These are relevant only when the mappingFeature method is SlipComp, see 19.7.1. 

 Slip Compensation Speed 19.9.1

GUI: -none- 

CLI : slipComp_speed floatValue // sets Eye A 

EyeA: SlipComp_speed floatValue 

EyeB: SlipComp_speed floatValue 

 floatValue: in range [ 0.005 …… 1.0 ]  

Default: 0.03 

This is the speed at which the calculated error value due to slip is modified.  A value of 1.0 causes 
immediate response to any error -- it will not filter vibrations and it will not filter transient glint loss, 
which are among the primary advantages of the SlipCompensation method.  A value of 0.5 would use 
half of the current value and half of the previous average error based on the Exponential Moving 
Average (EMA) algorithm.  A small parameter value is suitable for very slow slip.  Because the EMA is 
recalculated with every new eye image, even a small value can produce an effect reasonably quickly.  
To get a feel for the amount of correction, try moving (slipping) the EyeCamera deliberately while 
fixating on the POG overlay spot and see how quickly it recovers. 

See also: mappingFeature,  slipComp_xGain , slipComp_yGain   

VPX_SendCommand( “slipCompSlipComp_speed 0.51”); // sets eye A 

VPX_SendCommand( “EyeA:SlipComp_speed 0.1”); 

VPX_SendCommand( “EyeB:SlipComp_speed 0.2”); 

 
 

  Slip Compensation X-Gain 19.9.2

GUI: -none- 

CLI : SlipComp_xGain floatValue // sets Eye A 

EyeA: SlipComp_ xGain floatValue 

EyeB: SlipComp_ xGain floatValue 

 floatValue: in range: Real 

Default: 1.0,  i.e. no gain 

Given a certain (slowly varying) calculated slip error, this controls how much that error value affects 
the gaze point in the horizontal.  Default is 1.0, i.e. no gain as HMD slippage is typical in the vertical 
direction. 

See also: mappingFeature, slipComp_speed, slipComp_yGain   
 
 



 
Arrington Research 

3/2/2016 
Page 150 

  Slip Compensation Y-Gain 19.9.3

GUI: -none- 

CLI : SlipComp_yGain floatValue // sets Eye A 

EyeA: SlipComp_ yGain floatValue 

EyeB: SlipComp_ yGain floatValue 

 floatValue: in range: Real  

Default: 1.1,  i.e. slight gain 

Given a certain (slowly varying) calculated slip error, this controls how much that error value affects 
the gaze point in the vertical. 

See also: mappingFeature, slipComp_speed, slipComp_xGain   

 
  

  



 
Arrington Research 

3/2/2016 
Page 151 

19.10 EyeMovie related controls 

 

 Open / Close new EyeMovie file. 19.10.1

GUI: File > EyeMovie > Unique EyeMovie Recording 

File > EyeMovie > New EyeMovie Recording … 

File > EyeMovie > Close EyeMovie Recording 

CLI : eyeMovie_NewUnique   

eyeMovie_NewName  fileNameString  

eyeMovie_Close 

Default: NewUnique creates a file name from the data & time  

Open/Close a new EyeMovie and starts recording. 
Version 2.9.3.123 moves this menu to main File menu, was in each EyeCamera window popup menus. 

VPX_SendCommand( “eyeMovie_NewName ‘my eye movie’ ”); 

 
 

 EyeMovie Play 19.10.2

GUI: File > EyeMovie > Play (toggle) 

CLI : eyeMovie_Play  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

Toggles between live EyeCamera video and EyeMovie video. 
If no EyeMovie has been loaded, they the Open EyeMovie Dialog Box is shown. 
See also: eyeMovie_Load 

VPX_SendCommand( “eyeMovie_Used Toggle”); 

 



 
Arrington Research 

3/2/2016 
Page 152 

 EyeMovie Load … 19.10.3

GUI: File > EyeMovie > Load EyeMovie … 

CLI : eyeMovie_Load  fileNameString  

eyeMovie_Load   // with no argument will show the Load EyeMovie DialogBox 

eyeMovie_LoadDialog  

eyeMovie_UnLoad 

Default:  

Loads the specified EyeMovie (must specify extension), or if no argument is give the the Open EyeMovie 
DialogBox is shown.  
NOTE: this does NOT start the movie playing, use eyeMovie_Play On to start playing. 
Version 2.9.3.1213 launches Load Dialog if no parameter, previously gave and error. 

VPX_SendCommand( “eyeMovie_Load ‘myEyes.AVI’ ”); 

 
 

 EyeMovie EndAction 19.10.4

GUI: File > EyeMovie > EndAction : { Stop, Loop, Reverse } 

CLI : eyeMovie_EndAction  Option  

  Option: any one of: Stop, Loop, Reverse 

Default: Reverse – this reduces discontinuities  

Specifies what to do when the movie ends. 

VPX_SendCommand( “eyeMovie_EndAction Reverse”); 

 
 

 EyeMovie Percent Location 19.10.5

GUI: Controls window, EyeA tab, Frame 0% (slider) #0 

CLI : eyeMovie_Percent  normalizedValue  

  normalizedValue: in { 0.0  … 1.0 } 

Default: Starts at the beginning = 0.0  

Allows user to skip to specified location in the movie. 

VPX_SendCommand( “eyeMovie_Percent 0.5”); // go to middle 

 
 



 
Arrington Research 

3/2/2016 
Page 153 

 EyeMovie Play Speed 19.10.6

GUI: Controls window, EyeA tab, Speed 1.0  (slider) 

CLI : eyeMovie_Speed  non-zero realNumber  

  non-zero realNumber: in { 0.0  … 99.0 } 

Default: 1.0  

Allows user to control the playback speed of the movie. The default 1.0 attempts to be normal, or a 
reasonalble speed. Less than 1.0 is slower, more than 1.0 is faster. 

VPX_SendCommand( “eyeMovie_Speed 0.5”); // go to middle 

 
 

 EyeMovie Binocular 19.10.7

GUI: File > EyeMovie > EyeMovie is Binocular (check mark) 

CLI : eyeMovie_IsBinocular  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No  

Tells ViewPoint to split the movie in half and sent the EyeB half to the EyeB EyeCamera window. 

VPX_SendCommand( “eyeMovie_IsBinocular TRUE”); //  

 
 

 EyeMovie Binocular 19.10.8

GUI: File > EyeMovie > EyeMovie is Binocular (check mark) 

CLI : eyeMovie_IsBinocular  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No  

Tells ViewPoint to split the movie in half and sent the EyeB half to the EyeB EyeCamera window. 

VPX_SendCommand( “eyeMovie_IsBinocular TRUE”); //  

 
 



 
Arrington Research 

3/2/2016 
Page 154 

 EyeMovie Zoom / Pan 19.10.9

GUI: EyeCamera window – Pan with mouse when Right-mouse button is down (some versions) 

CLI : eyeMovie_Zoom { 0.0 to 0.99 } // zero is no zoom, 0.99 is only a few pixels 

eyeMovie_Center {0.0 to 0.99} {0.0 to 0.99} // x and y movie location to center upon 

Default: 0.0  and 0.0  0.0 

Allows panning and zooming of the movie 

VPX_SendCommand( “eyeMovie_Zoom 0.5;  eyeMovie_Center 0.2 0.8”);  

 

  



 
Arrington Research 

3/2/2016 
Page 155 

19.11 Video related controls 

 
Video commands relating to the eyes take a VideoStream Specifier Prefix: EyeA:  EyeB: , there should be 
no white space between the specifier and the command. 

 

 Specify EyeCamera Video Input Standard 19.11.1

GUI: EyeCamera window > Monitor icon > Video Standard > { NTSC, PAL, SECAM } 

CLI : videoStandard  Option // Eye A 

EyeA:videoStandard  Option  

EyeB:videoStandard  Option  

  Option: any one of: NTSC, PAL, SECAM 

Default: NTSC upon first run, but saved in preferences file thereafter. 

Specifies which video mode to use for the specified eye. 
Note: SilverBox (USB-60x3) currently only supports NTSC. 
Note: Does not apply to Digital cameras, such as in the USB-220 systems. 
ViewPoint tries to ensure that it starts up in a friendly way each time; to facilitate this the 

videoStandard selection is saved in a special Preferences file that is evaluated each time that ViewPoint 
is launched. 

VPX_SendCommand( “videoStandard NTSC”); // Eye A 

VPX_SendCommand( “videoStandard PAL”); NTSC”);  

VPX_SendCommand( “videoStandard NTSC”); 

 
 

 Specify SceneCamera Video Input Standard 19.11.2

GUI: -none- 

CLI : scene_videoStandard  Option  

  Option: any one of: NTSC, PAL, SECAM 

Default: NTSC  

Specifies which video mode to use for the scene camera. 
Note: SilverBox (USB-60x3) currently only supports NTSC. 
Note: Does not apply to Digital cameras, such as in the USB-220 systems. 
Implemented 2.8.5.017 

VPX_SendCommand( “scene_VideoStandard NTSC”); 

 
 



 
Arrington Research 

3/2/2016 
Page 156 

 Specify Video Operation Mode 19.11.3

GUI: EyeCamera window > Monitor Icon > Mode > Setup, Precision, Speed 

EyeCamera window > Monitor Icon > Mode > 90, 220 (USB-220 products) 

CLI : videoMode  ProcessingMode // sets Eye A 

EyeA:videoMode  ProcessingMode  

EyeB:videoMode  ProcessingMode  

  Analog ProcessingMode: Setup, Precision, Speed 

  Digital ProcessingMode: 90, 220, 350, 400 (USB-220 products) 

Default: Setup, 220 

Specifies which operation mode to use for the specified eye. The options vary depending upon the 
product that is used.  

Analog video products (PC60, GigE60, USB-30x3, USB-60x3) allow three modes: Setup 
(320x240@30Hz), Precision (640x480@60Hz), and Speed (320x240@60Hz).  

Note: in older versions Speed mode ran at 640x240@60 and Speed2 mode ran at (320x240@60Hz), 
but the former is obsolete. 

Digital video products (USB-400, USB-220, USB-90) allow modes: 90, 220, 350, 400, that specify the 
frame rate, while the image size is maximized for the allowable bandwidth. The maximum allowed will 
depend upon the product license purchased. 

Use EyePrefix to specify a particular eye. See 13.1 for more details. 

VPX_SendCommand( “videoMode Precision”); // sets Eye A 

VPX_SendCommand( “EyeA:videoMode Precision”); 

VPX_SendCommand( “EyeB:videoMode 90”); 

 

 Specify Dark or Bright Pupil Tracking 19.11.4

GUI: EyeCamera window > Monitor Icon > Pupil Type > Dark Pupil, Bright Pupil 

CLI : pupilType  PupilType // Eye A 

EyeA:pupilType  PupilType 

EyeB:pupilType  PupilType 

  PupilType: Dark, Bright 

Specifies dark or bright pupil tracking for the specified eye.  When dark pupil is selected, the tracking 
algorithm looks for pixels below threshold.  When bright pupil is selected, the tracking algorithm looks 
for pixels above threshold. 

VPX_SendCommand( “pupilType dark”); // Eye A 

VPX_SendCommand( “EyeA:pupilType dark”); 

VPX_SendCommand( “EyeB:pupilType dark”); 

 



 
Arrington Research 

3/2/2016 
Page 157 

 Specify Pupil Segmentation Method 19.11.5

GUI: EyeCamera window > Monitor Icon > Pupil Segmentation Method >  

   { Centroid, Oval Fit, Ellipse } 

CLI : pupilSegmentationMethod Method // Eye A 

EyeA:pupilSegmentationMethod Method 

EyeB:pupilSegmentationMethod Method 

  Method: Centroid, OvalFit, Ellipse 

Default: OvalFit (for older versions), Ellipse (for newer versions) 

Specifies which pupil segmentation method to use for the specified eye. The Centroid is obtained 
first in all cases. OvalFit or Ellipse perform additional image processing and fitting. 

The pupil width and pupil aspect ratio will not be available unless either OvalFit or Ellipse are 
selected. 

For more information on the PupilSize relative to which pupil segmentation method is selected, see 
VPX_GetPupilSize. 

Note: Blinks are detected by examining when the pupil aspect ratio is below criterion; this 
calculation usually performs better with the older OvalFit than the newer Ellipse method.   

VPX_SendCommand( “pupilSegmentationMethod Ellipse” ); // Eye A 

VPX_SendCommand( “EyeA:pupilSegmentationMethod Ellipse” ); 

VPX_SendCommand( “EyeB:pupilSegmentationMethod Ellipse” ); 

 

 Specify Glint Segmentation Method 19.11.6

GUI: EyeCamera window > Monitor Icon > Glint Segmentation Method >  

  { Centroid, Oval Fit } 

CLI : glintSegmentationMethod Method // Eye A 

EyeA:glintSegmentationMethod Method 

EyeB:glintSegmentationMethod Method 

  Method: Centroid, OvalFit  

Default: OvalFit 

Specifies which Glint Segmentation Method to use for the specified eye, either Oval Fit or Centroid. 
Actually the Centroid is obtained in either case, but Oval Fit performs additional image processing and 
fitting. 

Note: changing this may also change the values of minimumGlintScanDensity and glintScanDensity. 

VPX_SendCommand( “glintSegmentationMethod OvalFit” ); // Eye A 

VPX_SendCommand( “EyeB:glintSegmentationMethod OvalFit” ); 

 



 
Arrington Research 

3/2/2016 
Page 158 

 Toggle Freeze Video Image Preview On / Off 19.11.7

GUI: EyeCamera window, SnowFlake button              ^F 

CLI : videoFreeze  BoolValue // EyeA 

videoFreezeSync  BoolValue // Synchronizes EyeA & EyeB toggle effect 

EyeA:videoFreeze  BoolValue 

EyeB:videoFreeze  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No 

Allows simultaneous freezing and unfreezing of all video images (EyeA, EyeB, Scene, etc.), PenPlot 
window display and eye data collection. 

See also:  dataFile_Pause Toggle 
Use videoFreeze to freeze a single target video channel. 

VPX_SendCommand( “videofreeze Yes” ); // Eye A 

VPX_SendCommand( “EyeB:videofreeze Yes” );  

FKey_cmd  1  { videoFreezeSync Toggle } 

 

 Reset Video Capture Device 19.11.8

GUI: EyeCamera window > monitor icon > Reset EyeCamera Video 

Stimuli > ViewSource > Reset SceneCamera 

CLI : videoReset // Eye A 

sceneReset 

Resets the specified video capture device for the specified eye or scene video. 
Prefix VideoStream specifier: EyeA:  EyeB: 

VPX_SendCommand( “videoReset” );  

VPX_SendCommand( “EyeB:videoReset” ); 

VPX_SendCommand( “sceneReset” ); 

 



 
Arrington Research 

3/2/2016 
Page 159 

 VideoMirror 19.11.9

GUI: -none- 

CLI : videoMirror axisFlags 

axisFlags:  H , V  

Mirrors (flips) the video image (e.g: [b]) Horizontally (left-right: [d]) and or Vertically (up-down: [P]). 
Both will flip the [b] to a [q]. Arguments must be separated by white spaces.  
Currently works only with certain hardware, e.g.: USB-220. 
Prefix VideoStream specifier: EyeA:  EyeB: 
Version 2.9.3.121 changed CLI name from ‘mirror’ to ‘videoMirror’., 
See also: calibration_InitWithHorizontalFlip, calibration_InitWithVerticalFlip   

VPX_SendCommand( “videoMirror V H” );    // VH is invalid, must separate arguments. 

VPX_SendCommand( “EyeB:videoMirror H” ); // Omission deletes, so –V is implied. 

  



 
Arrington Research 

3/2/2016 
Page 160 

19.12 Calibration Controls 

It should be noted that some of these commands are closely inter-related and changing one may 
have the side effect of changing others. Calibration is described in Chapter 8. 

 

 Start Auto-Calibration 19.12.1

GUI: EyeSpace window > Auto-Calibrate button    ^A ( toggle ) 

EyeSpace window > STOP Calibration button  ^A ( toggle ) 

CLI : calibrationStart 

 calibrationStop 

Starts / Stops the automatic calibration process. While autocalibration is in progrogress, the Auto-

Calibrate button name changes to STOP Calibration. Pressing STOP Calibration immediately terminates the 
automatic calibration process, before its normal completion. 

VPX_SendCommand ( “calibrationStart” ); 

VPX_SendCommand ( “calibrationStop” ); 

 
 

 Specify Calibration Stimulus Presentation Speed 19.12.2

GUI: EyeSpace window > Advanced button > Duration slider 

CLI : calibration_StimulusDuration milliseconds 

milliseconds : integer between 1 and 400 

Default:  depends upon the OS 

Specifies the delay in milliseconds between calibration stimulus changes (zoom rectangle decrements). 
ViewPoint attempts to set an optimal default value according to the operating system version. The 
“milliseconds” specification is only approximate and unfortunately varies between Microsoft operating 
system versions. This value also affects the warning time and the Inter-Stimulus Interval (ISI) that specify 
durations in units of stimulus duration milliseconds. 
The maximum duration is 400 ms, and the minimum is 1 millisecond. 

VPX_SendCommand ( “calibration_StimulusDuration 145” ); 

 



 
Arrington Research 

3/2/2016 
Page 161 

 Specify the Duration of Calibration Warning Notice 19.12.3

GUI: EyeSpace window, Advanced button, Warning slider 

CLI : calibration_WarningTime durationUnits 

durationUnits: integer between 0 and 100 

Default: 20  

Specifies the delay for posting a warning that calibration is about to start. ViewPoint attempts to set 
an optimal default value according to the operating system version. The time is only approximate.  

The delay is in units of the stimulus duration specified by the command: calibration_StimulusDuration. 
If the calibration Stimulus Duration is set to 50 and the Warning Time is set to 20, then there will be 

20 * 50 millisecond delays that would total roughly 1 second. 
The value 0 specifies no warning is to be given. 
See also: calibration_StimulusDuration 

VPX_SendCommand ( “Calibration_WarningTime 15” ); 

 
 

 Specifies Interval Between Presentation of Calibration Points 19.12.4

GUI: -none- 

CLI : calibration_ISI durationUnits 

durationUnits: integer between 1 and 9 

Default: 2 

Specifies the inter-stimulus interval between calibration points. ViewPoint attempts to set an optimal 
default value according to the operating system version. The time is only approximate.  
The delay is in units of the stimulus duration specified by the command: calibration_StimulusDuration. 
If the calibration Stimulus Duration is set to 50 and the ISI is set to 20, then there will be 20 * 50 
millisecond delays that would total roughly 1 second. 
The value 0 specifies no ISI time. 

See also: calibration_StimulusDuration 

VPX_SendCommand ( “Calibration_ISI 2” ); 

 
 
 



 
Arrington Research 

3/2/2016 
Page 162 

 Specify Number of Calibration StimulusPoints 19.12.5

GUI: EyeSpace window > drop-down list: 6 … 72 

CLI : calibration_Points numberOfPoints 

numberOfPoints : integer from the following set: 

  { 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72 } 

Default: 16 

Sets the number of calibration points to be presented. 
IMPORTANT: 6 calibration points should not be used unless the subject cannot maintain focus long 
enough to calibrate additional points.  6 points only has 2 vertically spaced points, and thus gives a 
poor vertical calibration.  9 points is the minimum recommended points. 
Note that the valid values are either N x N or N x (N-1) 
Six points should generally never be used, because this provides only horizontal calibration. 
See manual calibration option if fewer points are required. 

VPX_SendCommand ( “calibration_Points 12” ); 

 
 

 Specify Calibration StimulusPoint Color 19.12.6

GUI: EyeSpace window > Advanced button > Set Stimulus Color button 

CLI : calibration_StimulusColor intRed intGreen intBlue 

intRed 0-255 intGreen 0-255 intBlue 0-255 

Specifies the red, green and blue components ( 0 to 255 ) of the calibration StimulusPoints E.g. 255 255 
255 is white and 100 100 255 is a sky blue. 

VPX_SendCommand ( “calibration_StimulusColor 255 255 025” ); 

 
 

 Specify Calibration Stimulus Window Background Color 19.12.7

GUI: EyeSpace window > Advanced button > Set Background Color button 

CLI : calibration_BackgroundColor intRed intGreen intBlue 

intRed 0-255 intGreen 0-255 intBlue 0-255 

Specifies the red, green and blue components ( 0 to 255 ) of the calibration Stimulus window 
background E.g. , 255 255 255 is white and 100 100 255 is a sky blue. 

VPX_SendCommand ( “calibration_BackgroundColor 050 100 255” ); 

 



 
Arrington Research 

3/2/2016 
Page 163 

 Specify CalibrationStimulus Type 19.12.8

GUI: -none- 

CLI : calibration_StimulusType <options> 

 <options> include: Shrink, Bounce 

Default: Bounce 

Shrink is the original type where a rectangle shrinks to a dot and disappears.   
Bounce is similar, but it re-expands to original size 

VPX_SendCommand ( “calibration_StimulusType Bounce” ); 

 
 

 Calibration Snap Mode 19.12.9

GUI: EyeSpace window > Advanced button, Snap Presentation Mode checkbox 

CLI : calibration_SnapMode BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Set ON if viewSource SceneCamera, otherwise set OFF 

SnapMode means that the Calibration Stimulus Images (the zooming concentric rectangles) are not 
presented, and the calibration of the currently selected point is immediately performed based on the 
current eye position. This is useful for remote or manual calibration as when using the SceneCamera 
option and when performing calibration with StimulusPoints that are controlled and generated on a 
remote computer. 

This command affects the behavior of the Re-Present button 19.12.17 and the Slip-Correction button 
19.12.14 buttons/commands and is indicated by the appearance of an asterisk ( * ) on these buttons 
when in this special mode.  

SnapMode only effects the GUI interface, it does not effect CLI commands such as calibration_Snap. 

See also: 

calibration_Snap 

calibration_AutoIncrement  

calibrationRedoPoint 

VPX_SendCommand ( “calibration_SnapMode ON” ); 

 



 
Arrington Research 

3/2/2016 
Page 164 

 Calibration Beep when Finished 19.12.1

GUI: EyeSpace window > Advanced button, Beep Finished checkbox 

CLI : calibration_BeepFinished BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Set ON if viewSource SceneCamera, otherwise set OFF 

This is very useful when the user is calibrating the subject with the SceneCamera system, where the user 
is positioning a laser pointer, or a finger and pressing a button. The beep notifies the user that the entire 
calibration sequence is complete. Otherwise, continued snap&inc (default FKey 8) will continue and 
recycle through the calibration points. 

VPX_SendCommand ( “calibration_StimulusType Bounce” ); 

 
 

 RePresent in Snap Calibration Mode 19.12.2

GUI: EyeSpace window > Re-present * (when asterisk is showing) 

CLI : calibration_Snap 

calibration_Snap integer 

snap&inc 

Default:  

The calibration of the currently selected point is immediately performed based on the current eye 
position without presenting the Calibration Stimulus Images (the zooming concentric rectangles).  
Compare this to: calibrationRedoPoint that does show the stimuli. 
This is useful for remote or manual calibration as when using the SceneCamera option and when 
performing calibration with StimulusPoints that are controlled and generated on a remote computer. 
The command snap&inc provides a handy way to { calibration_Snap; calibration_SelectPoint NEXT } 
Use of this command does not require, and in many situations obviates the need for, changing the 
calibration_SnapMode. 
See also: calibration_SelectPoint NEXT,  calibration_SelectIndex,  calibrationRedoPoint 

KnownIssue: once calibration_Snap N is specifed, subsequent calibration_Snap (without an 
argument) use the last specified N rather than the currenlty selected point. 

VPX_SendCommand ( “calibration_Snap” ); 

VPX_SendCommand ( “calibration_Snap %d”, pn ); 

 



 
Arrington Research 

3/2/2016 
Page 165 

 AutoIncrement Calibration Mode 19.12.3

GUI: EyeSpace window > Advanced button > Auto-Increment checkbox 

CLI : calibration_AutoIncrement BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Set ON if viewSource SceneCamera, otherwise set OFF 

Auto-Increment affects the behavior of the EyeSpace window > Re-Present button and CLI: calibration_Snap 
command. It is indicated by a double plus ( ++ ) on the button when in this special mode.  
This is useful to turn this OFF when trying to repeatedly capture an untrained animal’s gaze a one 
particular point. This mode is useful for manual calibration as with a SceneCamera. 

VPX_SendCommand ( “calibration_AutoIncrement TRUE ” ); 

 
  



 
Arrington Research 

3/2/2016 
Page 166 

Presentation Order 
 

 Calibration StimulusPoint Presentation Order 19.12.4

GUI: EyeSpace window > Advanced button > Presentation Order pulldown list 

CLI : calibration_PresentationOrder orderChoice 

orderChoice: Sequential, Random, Custom 

This affects both auto-calibration and manual calibration that sequence through the calibration 
index values. If the user has set:  calibration_PresentationOrder  Sequential  then the index value and 
the calibration StimulusPoint number are the same. 

This selection automatically changes as a side effect when changing the calibration 
PointLocationMethod selection (see section 19.12.10), as follows: 

Point Locations Presentation Order 

Automatic Random 

Custom Set Random 

OnContent Sequential 
 

VPX_SendCommand ( “calibration_PresentationOrder Random” ); 

 
 

 Specify Calibration StimulusPoint Presentation Order 19.12.5

GUI: -none- 

CLI : calibration_CustomOrderList n1 n2 n3 n4 n5 n6 ... 

Default: 6 5 4 3 2 1 9 8 7 12 11 10 16 15 14 13 20 19 18 17 21 22 23 … 

Allow specification of up to 72 calibration point in the desired order of presentation. 
Caution: An error will occur if the user has provided a point number in the list, which is larger than the 
selected number of calibration Points (i.e., the quantity of calibration points). For example, if the user 
specified: customOrderList 6 72 4 69 2 1 and also specified: calibrationPoints 12, the points 72 and 69 would 
cause errors, because they are greater than 12. 
See also: 
calibration_SelectIndex,   calibration_CustomPoint 

calibration_SelectPoint,   calibrationPoints  

VPX_SendCommand ( “calibration_ CustomOrderList 6 1 5 2 4 3” ); 

 



 
Arrington Research 

3/2/2016 
Page 167 

 Specify Individual Custom Calibration StimulusPoints 19.12.6

GUI: -none- 

CLI : calibration_CustomOrderEntry index calStimPoint 

index : integer in { 1 to N } 

calStimPoint : integer in { 1 to N } 

Default: See calibration_CustomOrderList, just above. 

Used to specify individual custom calibration point entries. 
Caution: see the Caution section in calibration_CustomOrderList, above. 
See also: 

calibration_SelectIndex  

calibration_SelectPoint  

VPX_SendCommand ( “calibration_CustomOrderEntry 1 6” ); 

 
 

 Display Custom Calibration StimulusPoint Order 19.12.7

GUI: -none- 

CLI : calibration_CustomOrderDump 

Prints the customOrder of calibration points to the History window. 

VPX_SendCommand ( “calibration_CustomOrderDump” ); 

 
 

 Select the Specified Calibration DataPoint 19.12.8

GUI: EyeSpace window, DataPoint slider 

or/ Click mouse in EyeSpace window, calibration graphics well 

CLI : calibration_SelectPoint pointSelection 

pointSelection: LAST, NEXT, or int { 1 .. N } 

Selects the specified calibration DataPoint. The point will be highlighted in the EyeSpace window.  This 
is the same number as the value shown next to the EyeSpace window > Data Point slider.  
Note: Controls window > Display tab > Calib Region checkbox will show the calibration StimulusPoint 
locations. 
See also:  calibration_SelectIndex  

VPX_SendCommand ( “calibrationSelectPoint 7” ); 

 



 
Arrington Research 

3/2/2016 
Page 168 

 Specify an Index Number for Calibration DataPoint 19.12.9

GUI: -none- 

CLI : calibration_SelectIndex indexSelection 

indexSelection: LAST, NEXT, or int { 1 .. N } 

Selects the SequenceIndex number that maps to the specified calibration DataPoint (as shown on 
the slider). The corresponding DataPoint will be highlighted in the EyeSpace window and to the EyeSpace 

window > Data Point slider will be adjusted to show the DataPoint. 
When we set calibration_PresentationOrder Sequential the selected index and the selected point are 

the same. When calibration_PresentationOrder is Random or Custom, the index is incremented and the 
DataPoint is taken from the random or custom table. 

Note: if the user has set:  calibration_PresentationOrder Random then the series is re-randomized 
every time the set finishes, so that there is a new set for the next loop. 

Note: this index is not displayed anywhere. 

See also: 

calibration_SelectPoint  

calibration_PresentationOrder 

calibration_CustomOrderList 

calibration_CustomOrderEntry index calStimPoint 

VPX_SendCommand ( “calibration_SelectIndex 7” );  

// look up Pt# in CustomOrderList 

 
 

Randomize Calibration StimulusPoints Check Box (DEPRECATED) 

GUI: EyeSpace window, Advanced button, Randomize Calibration checkbox 

CLI : calibration_randomize BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

DEPRECATED 

calibration_Randomize ON  calibration_PresentationOrder Random 

calibration_Randomize OFF  calibration_PresentationOrder Sequential 

See also: 
calibration_PresentationOrder 

VPX_SendCommand ( “calibration_randomize ON” ); 



 
Arrington Research 

3/2/2016 
Page 169 

Point Locations 
 

 Calibration StimulusPoint Location Method 19.12.10

GUI: EyeSpace window > Advanced button > Point Locations pulldown list 

CLI : calibration_PointLocationMethod  methodOption 

methodOption includes { Automatic, OnContent, Custom }   

Default: Automatic. 

 

methodOption Custom OnContent AutomaticGrid 

Presentation Order Random Sequential Random 

Point Locations Custom Set OnContent Automatic 

Button Name Adjust Custom Points Adjust Calibration Points Adjust Calibration Area 

Auto-Increment Off Checked ON Off 

Snap Presentation Off Checked ON Off 

Beep Finished -unchanged Checked ON -unchanged 

Show GridLines -unchanged -unchanged -unchanged 

Controls Window -unchanged Regions tab selected Regions tab selected 

Controls: Regions tab Nothing  Calibrate On Content Nothing 

 

Note: This replaces both calibration_OnContent <BoolValue> and calibration_CustomPointsUsed < 
BoolValue > 

These two legacy functions currently do as expected with an ON argument, and set 
calibration_PointLocationMethod AutomaticGrid with an OFF argument. 

See also: 

calibration_SelectIndex, calibration_SelectPoint, calibration_CustomOrderList, calibration_CustomPoint 

calibration_CustomOrderEntry, calibration_CustomOrderDump 

VPX_SendCommand ( “calibration_CustomOrderEntry 1 6” ); 

 
  



 
Arrington Research 

3/2/2016 
Page 170 

OBSOLETE  Set Custom Calibration StimulusPoint Based on Scene Video Content 

GUI: -none- 

CLI : calibration_PointLocationMethod OnContent 

Legacy {on: will do Calibration_PointLocationMethod OnContent,  Off: Automatic Grid} 

This calibration method allows the user to specify the position of custom calibration StimulusPoints 
at locations in the GazeSpace window based on the video content (e.g. a finger, a cardboard plaque with 
calibration dots painted on it etc.) When in this mode, a right mouse click in the Gaze Space window 
does two things: 

(a) Sets custom calibration StimulusPoint at point clicked in GazeSpace, on scene video content, 
(b) Sets calibration DataPoint immediately without showing a calibration StimulusPoint, i.e.( in snap) 

or (remote) fashion. 
Set the locations of the CustomCalibrationPoints (calibration StimulusPoints) based on user right-

mouse clicks in the SceneCamera window (GazeSpace window). Presumably this would be a mouse click 
upon certain video content, such as a fingertip when the user says "look at my 

Fingertip". 
This is primarily important because it allows post-hoc calibration on pre-recorded movies if the 

subject was looking at a calibration board or known targets. 
Remember that the calibration points are in column-major order, which means that successive 

points precede top-to-bottom down one column after another. For example, if there are 12 calibration 
points, the entry of OnContent points should proceed down the four columns, starting at column #1, on 
the left, 1:top-leftEdge, 2:middle-leftEdge, 3:bottom-leftEdge; then down the next two center columns, 
column #2 and column #3, and finally down column #4, on the right. 

Setting calibration_PointLocationMethod on content also sets the following: 
(a) Advanced Calibration > Snap Calibration Mode * to ON 
(b) Advanced Calibration > Auto-Increment ++ to ON 
(c) Advanced Calibration > Presentation Order to SEQUENTIAL 
(d) Control > Display > Calib Region to ON 
(e) Control > Display > ROI Regions to OFF 

VPX_SendCommand ( “calibration_PointLocationMethod  On Content”); 

Setting calibration_OnContent to OFF sets the above booleans to the opposite values, but does not 
reset the Calibration Present Order Legacy {On: will do calibration_PointLocationMethod On Content 
OFF: Automatic Grid} 

 
 

OBSOLETE  Calibration StimulusPoint Location On/Off 

GUI: -none- 

CLI : calibration_CustomPointsUsed BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No 

OBSOLETE – instead use: calibration_PointLocationMethod 
Turns custom calibration StimulusPoint location on or off. 



 
Arrington Research 

3/2/2016 
Page 171 

 

OBSOLETE  Set Custom Calibration StimulusPoint from Scene Video 

GUI: -none- 

CLI : calibration_OnContent BoolValue  

Default:  Off 

OBSOLETE – instead use: calibration_PointLocationMethod 
This calibration method allows the user to specify the position of custom calibration StimulusPoints 

at locations in the GazeSpace window based on the video content (e.g. a finger, a cardboard plaque with 
calibration dots painted on it etc.) When in this mode, a right mouse click in the Gaze Space window 
does two things: 
(a) Sets custom calibration StimulusPoint at point clicked in GazeSpace, on scene video content, 

(b) Sets calibration DataPoint immediately without showing a calibration Stimulus Point, i.e.( in snap) or (remote) fashion. 

Set the locations of the CustomCalibrationPoints (calibration StimulusPoints) based on user right-mouse clicks in the SceneCamera window (GazeSpace 
window). Presumably this would be a mouse click upon certain video content, such as a fingertip when the user says "look at my 

fingertip". 

This is primarily important because it allows post-hoc calibration on pre-recorded movies if the 
subject was looking at a calibration board or know targets. 

Remember that the calibration points are in column-major order, which means that successive 
points proceed top-to-bottom down one column after another. For example, if there are 12 calibration 
points, the entry of OnContent points should proceed down the four columns, starting at column #1, on 
the left, 1:top-leftEdge, 2:middle-leftEdge, 3:bottom-leftEdge; then down the next two center columns, 
column #2 and column #3, and finally down column #4, on the right. 
Setting  calibration_PointLocationMethod  OnContent  also sets the following: 

a. Advanced Calibration > Snap Calibration Mode * to ON 
b. Advanced Calibration > Auto-Increment ++ to ON 
c. Advanced Calibration > BeepFinished to ON 
d. Advanced Calibration > Presentation Order to SEQUENTIAL 
e. Control > Display > Calib Region to ON 
f. Control > Display > ROI Regions to OFF 

Legacy setting calibration_OnContent OFF causes the above booleans to be set to the opposite values, but does not reset the Calibration 
Present Order Legacy {On: will do calibration_PointLocationMethod OnContent OFF: AutomaticGrid} 

 



 
Arrington Research 

3/2/2016 
Page 172 

 Specify Custom Calibration StimulusPoint Locations  19.12.11

GUI: -none- 

CLI : calibration_CustomPoint  indexNumber  xLoc  yLoc 

indexNumber  is an integer from 1 to the number of points used. 

xLoc, yLoc are floating point numbers for the normalized location of the point. 

Specifies custom locations of the calibration StimulusPoints. This is useful when avoiding occluding 
objects and for Partial Binocular Overlap (PBO) situation. These points will only be used if you set: 
calibration_PointLocationMethod Custom. 

Note: The nearest-neighbor grid-lines in the EyeSpace are not automatically draw when this option 
is used, because the points could be in any configuration. 

See also: 
calibration_PointLocationMethod Custom ;  calibration_PointDump 

calibration_CustomOrderList ;  calibration_ShowEyeSpaceGrid 

stereoDisplay ON 

// 

calibration_Points 9 

calibration_PointLocationMethod Custom 

calibration_PresentationOrder Sequential 

// 

// EYE_A 

EyeA:calibration_CustomPoint  1  0.1  0.05 

EyeA:calibration_CustomPoint  2  0.1  0.5 

EyeA:calibration_CustomPoint  3  0.1  0.95 

// 

…… 

// 

// EYE_B 

EyeB:calibration_CustomPoint  1  0.1  0.15 

EyeB:calibration_CustomPoint  2  0.1  0.5 

EyeB:calibration_CustomPoint  3  0.1  0.85 

… 

 

 



 
Arrington Research 

3/2/2016 
Page 173 

 Dump Custom Calibration StimulusPoints Locations 19.12.12

GUI: -none- 

CLI : calibration_PointDump 

Prints the calibration point list in the History window. 
See also: 

calibration_CustomPoint  

calibration_PointLocationMethod Custom 

Calibration_PointDump 

 

 Display Nearest-Neighbor Gridlines in EyeSpace Window  19.12.13

GUI: Advanced Calibration window, Show GridLines on EyeSpace checkbox 

CLI : calibration_showEyeSpaceGrid BoolValue 
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

Turns ON or OFF the “spider web” nearest-neighbor grid between calibration points in the EyeSpace 
window.  

See also:  calibration_PointsUsed 

calibration_showEyeSpaceGrid  NO 

 

 Compensate for Slip  19.12.14

GUI: EyeSpace window > Slip-Correction button  

CLI : calibrationSlipCorrection CalibrationPoint  

  CalibrationPoint: Index number of the point to slip correct. 

Re-presents the specified calibration DataPoint and re-aligns calibration to compensate for slip. 
Normally a point near the center of the display should be chosen. 
See also: 
calibration_SnapMode 

VPX_SendCommand ( “calibrationSlipCorrection 7” ); 

 



 
Arrington Research 

3/2/2016 
Page 174 

 Adjust Calibration Area  19.12.15

GUI: Controls window > Regions tab > Calibration Region radio button 

Then use the mouse in the GazeSpace window to drag out the rectangular region 

CLI : Calibration_RealRect  L T R B 

L T R B: Normalized floating point values for the four sides. 

Default: 0.1 0.1 0.9 0.9 

Allows the user to adjust the calibration area (size and position) within which the calibration 
StimulusPoints are presented. The four values are the floating point coordinates (0.0 – 1.0) of the 
bounding rectangle, listed in the order: Left, Top, Right and Bottom.  For GUI control, the user must use 
the mouse in the GazeSpace window to drag out the rectangular region. 

VPX_SendCommand ( “calibration_RealRect 0.2 0.2 0.8 0.8” ); 

 

 Undo the Last Operation on a Calibration DataPoint 19.12.16

GUI: EyeSpace window > Undo button 

CLI : calibrationUndo  

Re-centers the selected calibration point.  

VPX_SendCommand ( “calibrationUndo” ); 

 

 Re-Present the Specified Calibration DataPoint 19.12.17

GUI: EyeSpace window > Re-present button 

CLI : calibrationRedoPoint CalibrationPoint 

CalibrationPoint: integer number of the point to re-present. 

Presents or Re-presents the current or specified calibration DataPoint using the Calibration Stimulus 
Images (the zooming concentric rectangles). 
The CalibrationPoint argument is optional, if omitted, the currently selected calibration point will be 
presented. 
The behavior is NOT modified by the calibration_SnapMode and calibration_AutoIncrement specifications.  
To immediately get the calibration point without any calibration graphics, use calibration_Snap. 
Note: The CalibrationPoint argument corresponds to the slider values in the EyeSpace window  (not 
the SequenceIndex) and does not depend on the calibration_presentationOrder chosen. 
See also:  calibration_SelectPoint NEXT,  calibration_SelectIndex,  calibration_Snap 

VPX_SendCommand ( “calibrationRedoPoint 7” ); 

VPX_SendCommand ( “calibrationRedoPoint” ); // defaults to current point 

 
 



 
Arrington Research 

3/2/2016 
Page 175 

 Save Image of Eye at Each Calibration DataPoint 19.12.18

GUI: -none- 

CLI : calibration_SaveEyeImages BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: On 

OBSOLETE: This was changed in the later 2.9 versions such that a matrix of calibration eye images is 
generated every time a calibration is performed. Separate image matrix files are saved for each eye. 
They can be viewed via the button in the EyeSpace window. 
(Old behavior: Off by default; when enabled this command will take a snapshot of the eye during 
calibration stimulus presentation at each calibration point.) 
This feature is useful to examine the position of the eye when presented the stimulus. This allows users 
to determine any problems with the subject’s eyes or loss of a direct image of the pupil at a certain 
calibration point. 

VPX_SendCommand ( “calibration_SaveEyeImages yes” ); 

 
 

 Calibration Quality 19.12.19

GUI: -none- 

CLI : calibration_dumpQuality 

Default: Off 

Dumps calibration quality information to the History window, including: 
(a) Error for each point, (b) ssqErr for each method and each eye. 
Here the error is the distance between the calibration StimulusPoint and the calculated Position of Gaze 
(POG), for each point. 
Optional EyePrefix defaults to Both: if binocular and no prefix specified. 

VPX_SendCommand ( “EyeA:calibration_dumpQuality” ); 

 
  



 
Arrington Research 

3/2/2016 
Page 176 

 Nudge 19.12.20

GUI: Mouse click in the GazeSpace window at the location at which the subject is known to be 

looking.  

CLI : gazeNudge  xPos yPos 
gazeNudgeInc  xInc  yInc 
xPos, yPos, xInc, yInc: are floating point numbers 

Default 0.0 

If the calibration appears to have slipped you may want to adjust it on the fly, without using the Slip-
Correction procedure.  

Note that the gazeNudge is applied only to the Corrected data. 
xPos and yPos are the normalized position coordinates of the correct POG. 
xInc and yInc are the normalized position increments to be added to the nudge vector. 

VPX_SendCommand ( “gazeNudgeInc %g %g”, x, y ); 

VPX_SendCommand ( “fkey_cmd 9 { gazeNudgeInc 0.2 0.0 }” ); 

 

 Manual Calibration 19.12.21

GUI: EyeSpace window > Advanced button 

 Advanced window > Manual Calibration section 

CLI : manualCalibration_AspectRatio  aspect 

manualCalibration_Center 

manualCalibration_Gain  gain   

 aspect, gain: floating point values in range 0.01 to 1.0 

Default 0.0 

Non-verbal subjects may be calibrated manually by specifying (a) the aspect ratio of the stimulus 
display, (b) setting the center of gaze when the subject is believed to be gazing at the center, and (c) 
adjusting the gain until the calculated position of gaze (POG) point appears to match the non-central 
points of gaze.  

This effects the initial calibration mapping. 

VPX_SendCommand ( “fkey_cmd 9 { manualCalibration_Center }” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 177 

 Initialial Calibration Flip (Mirroring) 19.12.22

GUI: EyeSpace window > Advanced button 

    Advanced window > Init: [x] Horizontal Flib  [x] Vertical Flip 

CLI : calibration_InitWithHorizontalFlip  BoolValue 

calibration_InitWithVerticalFlip  BoolValue 

   BoolValue:  Yes, No, True, False, On, Off, 1, 0, Toggle 

Default 0.0 

This effects the initial calibration mapping only. It does not effect calibration presentation order. 
It is desirable for the system to startup with at least a good rough calibration, where the eye 

movements are at least in the correct directions. Mirrors and camera orientation can flip these, so the 
software allows the user to correct for this. 
Setting these correctly is especially important when using Manual Calibration.  The flip options persist 
during Manual Calibration adjustments. 
 

No Flip Horizontal Flip Vertical Flip Horizontal & Vertical 
Flip 

10   7   4   1 
11   8   5   2 
12   9   6   3 

1   4   7   10 
2   5   8   11 
3   6   9   12 

12   9   6   3 
11   8   5   2 
10   7   4   1 

3   7   9   12 
2   5   8   11 
1   4   7   10 

 
See also: videoMirror 
 

VPX_SendCommand ( “calibration_InitWithHorizontalFlip  TRUE” ); 

 



 
Arrington Research 

3/2/2016 
Page 178 

 

19.13 Controls: Criteria Controls 

 Specify amount of Smoothing 19.13.1

GUI: Controls window > Criteria tab > Smoothing Points slider 

CLI : smoothingPoints IntValue 

Default: 4 

The amount of smoothing to apply to the gaze position. The number specifies the number of previous 
sample points to use in the trailing average. A value of 4 makes attractive and useful real-time graphics. 
The value 1 indicates to use only the current point, i.e., no smoothing. 
See also:  smoothingMethod velocityCriterion  
Modified: 2.8.2.44 

VPX_SendCommand ( “smoothingPoints 3” ); 

 

 Specify Smoothing Algorithm to Apply 19.13.2

GUI: Controls window > Criteria tab > Smoothing Method pulldown list 

CLI : smoothingMethod method 

 method: SMA, EMA 

Default: SMA 

The user may choose between two smoothing algorithms: Simple Moving Average (SMA) and Exponential 
Moving Average (EMA).  

The SMA method uniformly averages N pointsBack, i.e., all points having equal weight.   
  SMA(t) = [ x(t) + x(t-1) + ... + x(t-n) ] / N ; where n = (N-1) 
 

The EMA method uses the following algorithm: 
  EMA(t) = ( currentValue - EMA(t-1) ) * K + EMA(t-1) ; where K = 2 / ( pointsBack + 1 ). 
 

The number of pointsBack is adjusted by the Smoothing slider or the CLI: smoothingPoints. 

Added: 2.8.2.44 

VPX_SendCommand ( “smoothingMethod EMA” ); 

 



 
Arrington Research 

3/2/2016 
Page 179 

 Specify Velocity Threshold  19.13.3

GUI: Controls window > Criteria tab > Saccade Velocity slider 

CLI : velocityCriterion NormalizedValue    

velocityThreshold NormalizedValue  // deprecated Form 

 NormalizedValue: floating point number in range 0.0 to 1.0 

Default: 0.10 

The velocity level that is used to distinguish between saccades and fixations.  
This value is displayed in the PenPlot window TVelocity plot as an upper level line with vertical arms 
going up to the top. 
Note that the velocity magnitude, and consequently the required threshold, will be affected by the 
amount of smoothing applied. 
See also:  smoothingPoints; driftCriterion, fixationMinimumSecondsCriterion; penPlot +TVelocity 

VPX_SendCommand ( “velocityCriterion 0.8” ); // Prefered 

 
 

 Specify amount of Drift Allowed 19.13.4

GUI: Controls window > Criteria tab > Fixation Drift Allowed slider 

CLI : driftCriterion NormalizedValue 

 NormalizedValue: floating point number in range 0.0 to 1.0 

Default: 0.03  

Specifies the absolute drift away from the fixation start point that is tolerated before a Drift 
classification is made. The units are in normalized stimulus window coordinates, just like gaze point. 
Without a Drift Criterion, the eyes can slowly change position and still be classified as a Fixation, 
because the velocity never exceeded the Saccade Velocity Criterion.  
This value is displayed in the PenPlot window Drift plot as an upper level line with vertical arms going 
up to the top. 
See also:  velocityCriterion, fixationMinimumSecondsCriterion; penPlot +DRIFT  

Changes: Default value changed in version 2.8.3 from 0.1 to 0.03 

VPX_SendCommand ( “driftCriterion 0.025” );  

 



 
Arrington Research 

3/2/2016 
Page 180 

 Specify Fixation Time Criterion 19.13.5

GUI: Controls window > Criteria tab > Fixation Time Criterion 

CLI : fixationMinimumSecondsCriterion seconds 

seconds: a floating point number in range 0.0 to 1.0 

Default: 0.070   == that is 70 milliseconds 

Specifies the the minimum fixation time required for a tentative fixation to be classified as a Fixation 
Event.  This criterion level is displayed in the PenPlot window Fixation Time graphicsWell as a lower 
level line with vertical legs going down to the bottom.  
See also:  velocityCriterion, driftCriterion, penPlot +FIXATION 

VPX_SendCommand (“fixationMinimumSecondsCriterion 0.080” ); 

 

 Specify Pupil Aspect Ratio Failure Criterion 19.13.6

GUI: Controls window > Criteria tab > Pupil Aspect Criterion 

CLI : pupilAspectCriterion NormalizedValue 

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: 0.05 

Specifies the aspect ratio at which the data quality marker indicates that there is a problem. The default 
value is 0.05, so that any aspect ratio is accepted. Typically a useful value is about 0.8 Adjust the pupil 
aspect criterion for classification of blinks. 
This value is displayed in the penplot window Pupil Aspect (Blinks) as a lower level line with vertical legs 
going down to the bottom. The pupil oval fit changes color from yellow to orange when criterion is 
violated. 
See also:  penPlot +Aspect  

VPX_SendCommand (“pupilAspectCriterion 0.8” ); 

 

 Specify Pupil Max. Width Failure Criterion 19.13.7

GUI: Controls window > Criteria tab > Maximum Pupil Width slider 

CLI : pupilMaxWidthCriterion NormalizedValue 

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: 0.75 

Specifies the pupil width at which the data quality marker indicates that there is a problem. 
This value is displayed in the penplot window Pupil Major-axis or Pupil Width (depending on the pupil 
segmentation method) as an upper level line with vertical arms going up to the top. 
See also:  penPlot +Width 

VPX_SendCommand ( “pupilMaxWidthCriterion 0.35” ); 

 



 
Arrington Research 

3/2/2016 
Page 181 

 Specify Pupil Min. Width Failure Criterion 19.13.8

GUI: Controls window > Criteria tab > Minimum Pupil Width slider 

CLI : pupilMinWidthCriterion NormalizedValue 

NormalizedValue: a floating point number in range 0.0 to 1.0 

Default: 0.75 

Specifies the pupil width at which the data quality marker indicates that there is a problem. 
This value is displayed in the penplot window Pupil Major-axis or Pupil Width (depending on the pupil 
segmentation method) as a lower level line with vertical legs going down to the bottom. 
See also:  penPlot +Width 

VPX_SendCommand ( “pupilMinWidthCriterion 0.35” ); 

 



 
Arrington Research 

3/2/2016 
Page 182 

19.14 Region of Interest (ROI) 

 Define an ROI Box 19.14.1

GUI: -none- 

CLI : setROI_RealRect  Index  L T R B  Shape 

Index: Integer value indicating the ROI to specify. 

L T R B: Normalized floating point values for the four sides. 

Shape: any of: { Rectangle, Ellipse  } 

Default: One box at the center and eight iso-eccentric boxes. 

Defines a Region of Interest (ROI) (aka window discriminator box). The first value <n> specifies which 
ROI to adjust. The next four values are the normalized (0.0 to 1.0) coordinates of the bounding 
rectangle: Left, Top, Right, Bottom 
See also:  setROI_AllOff  setROI_isoEccentric  setROI_Shape 

VPX_SendCommand ( “setROI_RealRect 5 0.1 0.1 0.9 0.9 Ellipse” ); 

// Sets ROI #5 with 10% margins 

VPX_GetROI_RealRect(n,&rr); 

 

 Set ROI Name 19.14.1

GUI: -none- 

CLI : setROI_Name  NameString 

NameString: quoted text string 

Sets a name string for an ROI. 
Changes: Version 2.9.3.121 the ROI_Name now appears in the GazeSpace window when the ROI is 
selected, and in the Events window when an ROI event is reported. 

VPX_SendCommand( “setROI_Name 2 ‘Try Again’ ” ); 

 

 Draw IsoEccentric 19.14.2

GUI: -none- 

CLI : setROI_isoEccentric  NumberOfROI  SizeOfROI,  Radius,  AspectRatio 

NumberOfBoxes : Integer number of ROI in range {1 <= n <99} 

SizeOfROI, Radius: Normalized value in range {0.0 < s < 1.0} and {0.0 < r <0.5}. 

AspectRatio : Floating point ratio of the Width/Height of display in range {0.0 < a < 9.0} 

Default: NumberOfROI=8,  SizeOfRoi=0.12,  Radious=0.3,  AspectRatio=1.333 = (4/3) 

Convience method for creating a distribution of ROI, such that ROI#1 is in the center and ROI#2 through 
(NumberOfROI+1) are evenly spaced clockwise around it in an isoeccentric distribution, last one at top. 
Version 2.9.3.126 extended this method to include optional arguments SizeOfROI, etc. 



 
Arrington Research 

3/2/2016 
Page 183 

VPX_SendCommand( “setROI_isoEccentric 8  0.12  0.25  1.33” ); 

 

 Remove all ROI Boxes 19.14.1

GUI: -none- 

CLI : setROI_AllOff 

Default: -none- 

Removes all ROI boxes. 

VPX_SendCommand( “setROI_AllOff” ); 

 

 Select a Specific ROI 19.14.2

GUI: Controls window > Regions tab > Region of Interest slider 

Right mouse-click inside of ROI in the GazeSpace window 

CLI : setROI_Selection  ROIbox 

ROIbox : integer number of the box to be selected. i.e. 1 or 2 or 3 etc. Up to the max 
number of ROI boxes enabled. 

Default: -none- 

Select ROI number N. The selected ROI is shown in red when the ROI overlay graphics are shown.  
This can be used to highlight one particular ROI. 
See also: setROI_Lock;  GazeSpace_MouseAction 

VPX_SendCommand( “setROI_Selection 9” ); 

 
 

 Select the Next ROI Box 19.14.3

GUI: Controls window > Regions tab > Region of Interest slider 

CLI : setROI_selectNext 

Select the next ROI number (current + 1). The selected ROI is drawn in red when the ROI overlay 
graphics is shown. This can be used to highlight an area. 

HINT: A mouse wheel is extremely helpful for moving between selections of the region slider. 

VPX_SendCommand( “setROI_selectNext” ); 

VPX_SendCommand( “fkey 9 { setROI_selectNext } ” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 184 

 Lock ROI Settings 19.14.1

GUI: Controls window > Regions tab > Region of Interest slider (Locked when slid left) 

CLI : setROI_Lock 

Deselects all ROI, i.e. no ROI is selected. 
See also: setROI_Selection  

VPX_SendCommand( “setROI_Lock” ); 

 
 

 Associate ROI with a Particular Stimulus Image 19.14.2

GUI: File > Images > Save Image ROI              Alt-Shift-I 

CLI : saveImageROI 

saveImageROI differentFileName 

This command saves a special Settings file in the Images folder containing the positions of the 
currently specified regions of interest (ROI).  It provides an easy way to associate an image and the ROI 
needed for that image. Every time an image is loaded, e.g. ~/Images/MyImage01.bmp, ViewPoint also 
looks in the same folder for the file ~/Images/MyImage01.bmp_ROI.txt that contains ROI specifications. 
These ImageROI files are really just special small Settings files that are closely associated with the image 
file. Though designed for ROI, they could also be edited, for example, to play a sound that is associated 
with the image. 

VPX_SendCommand( “saveImageROI” ); 

 
 

 Set ROI Shape 19.14.3

GUI: Controls window > Regions tab > Region of Interest slider (Locked when slid left) 

CLI : setROI_Shape  Index  Shape 

setROI_Shape  Shape 

Index: Integer value indicating the ROI to specify. 

Shape: any of: { Rectangle, Ellipse  } 

If an ROI index is specified and valid, this sets that ROI to the specified shape; otherwise, if ROI index 
is not specified or is negative, this sets ALL the ROI to that shape. 

See also: setROI_RealRect  

VPX_SendCommand( “setROI_Shape 1 Ellipse” ); 



 
Arrington Research 

3/2/2016 
Page 185 

19.15 PenPlot Controls 

Many raw, calculated and derived data can be viewed in real-time in the PenPlot window. 

 ViewPoint PenPlot names and their meanings 19.15.1

 PenPlot names and Meanings Table 15.
CLI: penPLot name Meaning 

XGaze, YGaze Position relative to the Stimulus or SceneCamera 

XAngle, YAngle Angle derived from Screen size and distance measurements. Data is only valid after accurate GeometryGrid 
measurements are set.  

XPupil, YPupil Raw EyeSpace pupil position as a function of time 

Tvelocity Total Velocity 
Qualitative in (2D) ViewPoint, accurate in Degrees/Second in 3D ViewPoint & 3DWorkSpace 
Shows the Saccade Velocity threshold criterion. 

Width Pupil Major-axis in units normalized to the width of the EyeSpace window 

Height Pupil Minor-axis in units normalized to the width of the EyeSpace window 

Aspect Pupil Aspect Ratio that is calculated as minor-axis divided by major-axis  
Dimensionless ratio that is always between 0.0 and 1.0 
Shows Pupil Aspect Criterion threshold for blink detection 

Diameter Pupil Major-axis scaled to millimeters. 
Data is only valid after accurate pupil calibration is set, see 9.3 

  

Disparity Available only with binocular option 

FPS Frames Per Second 

Timing The reciprocal of Frames Per Second (FPS). Eg. 16.67 for 60 Hz systems 

Processing Time difference between the videoTime and the storeTime 
VPX_GetDataTime2( eyn, &videoTime );   VPX_GetStoreTime2( eyn, &storeTime ); 
processingTime = (storeTime - videoTime) * SecondsToMilliseconds; 

cpuLoad Similar to the Windows Task Manager 
Note: you can specify the amount of smoothing to use for the display with the following command: 

cpuLoad_SetSmoothing   percentPreviousValue 

Sets the amount of smoothing, must be >=0.0 and <1.0 
Lower values (e.g. 0.1) are less smoothing, higher values (e.g. 0.9) are more smoothing. 
The CPU usage varies wildly from sample to sample, so pretty much smoothing is required. 

 

 3DViewPoint & 3DWorkSpace PenPlots 19.15.2

3DViewPoint and 3DWorkSpace add additional PenPlots as well as changing some of the existing 
PenPlot names.  Below are the PenPlot names matched with their CLI command equivalent name. 



 
Arrington Research 

3/2/2016 
Page 186 

 PenPlot Names and Labels Table 16.
CLI: penPLot name Label in PenPlot window when in 3D mode 

ROI 3D ROI 

Panel 3D Panel 

Xgaze 3D Panel X 

Ygaze 3D Panel Y 

Xangle 3D Azimuth 

Yangle 3D Elevation 

Xvelocity 3D Azimuth Vel 

Yvelocity 3D Elevation Vel 

Tvelocity 3D Angular Vel 

Vergence 3D Vergence 

GazePoint3D 3D GazePoint 

HeadPosition Head Position (x,y,z; cm) 

HeadAngle Head Angle (y,r,p, deg)  ie yaw, roll, pitch 

 
 

 PenPlot Dump Names  19.15.1

GUI: -none- 

CLI : penPlot_dumpNames 

Default:  

Prints a list of each penPlotName in the History window. 

VPX_SendCommand( “penPlot_dumpNames” ); 

 
 

 Specify Which PenPlot Traces to Display 19.15.2

GUI: PenPlots > 

CLI : penPlot +penPlotName 

penPlot -penPlotName  

penPlotName:  use CLI penPlot_dumpNames to obtain a current list.  

Default: +Xgaze +Ygaze +Tvelocity +Width +Height +Aspect +Drift +Events +ROI +FPS 

Specifies which penPlots to display in the PenPlot window. To include a plot preceed its name string 
with a “+”, to exclude it preceed its name with “-“. Be careful that there is no white space between + or - 
and the name. Separate multiple strings arguments on the same line with a space, as in the example 
below. 
Use +All to show all penPlots, use –All to remove all penPlots. 
The CLI command penPlot_dumpNames will list each penPlotName in the History window. This is useful 
for spelling them correctly. Some of the more common are described here. 

VPX_SendCommand( “penPlot +Xgaze +Ygaze –Tvelocity +Width +Aspect –Timing” ); 

 



 
Arrington Research 

3/2/2016 
Page 187 

 PenPlot Background Color  19.15.3

GUI: -none- 

CLI : penPlot_BackgroundColor intRed intGreen intBlue 

intRed 0-255 intGreen 0-255 intBlue 0-255 

Default: 160 160 160 

Specifies the color that fills the PenPlot rectangle background.  The PenPlot Limen has its own fill color. 
See also:  penPlot_LimenFillColor  

VPX_SendCommand( “penplot_BackgroundColor 115 100 235” ); 

 
 

 PenPlot Limen Fill Color 19.15.4

GUI: -none- 

CLI : penPlot_LimenFillColor intRed intGreen intBlue 

intRed 0-255 intGreen 0-255 intBlue 0-255 

Default: 144 144 144 

Specifies the color that fills the rectangle within the criterion lines (threshold, limen) in the penPlots. 
The default value is slightly darker gray than the default penPlot_BackgroundColor. This is different from 
the colors of the upper (red) and lower (yellow) criterion lines themselves. 

See also:  penPlot_BackgroundColor  

VPX_SendCommand( “penplot_ LimenFillColor 115 100 235” ); 

 
 

 Specify Speed of PenPlot Scrolling 19.15.5

GUI: PenPlots > Speed > { ¼x, ½x, 1x, 2x, 4x, 8x, 16x } 

CLI : penPlot_Speed xInc 

 xInc: float in range {0.25 to 16.0} 

Default: 1 

Specifies the number of pixels to increment the the x (time) axis in the penPlot trace lines.  
Sometimes it is desirable to increase the speed of the penPlot scrolling, so that details, markers, and 

classifications can be more easily distinguished. 
Modified: 2.8.2.51, 2.8.3.445 

VPX_SendCommand( “penPlot_speed 6” ); 

 



 
Arrington Research 

3/2/2016 
Page 188 

 Specify Size of PenPlot Lines 19.15.6

GUI: PenPlots > PenSize > { 1, 2, 3, 4 } 

CLI : penPlot_PenSize size  

size: integer in range {1 to 4} 

Default: 1 

Specifies the thickness of the penPlot trace lines. 
Modified: 2.8.3.445 

VPX_SendCommand( “penPlot_penSize 4” ); 

 
 

 Specify Range of PenPlot Values 19.15.7

GUI: PenPlot window: Right mouse click in a lineGraph well:  

  popup menu allows : Zoom In / Zoom Out / UnZoom 

CLI : penPlot_Range  penPlotName  lowerValue  upperValue 

 penPlotName: Use CLI penPlot_dumpNames to obtain a current list.  

 lowerValue, upperVAlue: float 

Default: varies depending on plotName 

Specifies the lower and upper plot range values for a particular penPlot graph.  
The GUI Zoom In / Zoom Out adjust the range and also centers the range about the latest data point. 
See also: penPlot_dumpNames 
Added: 2.8.2.51 

VPX_SendCommand( “penPlot_Range xgaze 0.2 0.6” ); 

 
 

 Restart the PenPlot 19.15.1

GUI: -none- 

CLI : penPlot_restart 

Default: No 

Erases the penPlot lines and restarts the lines at theleft. 

VPX_SendCommand( “penplot_restart” ); 

 



 
Arrington Research 

3/2/2016 
Page 189 

 Specify the Behavior of the PenPlot after resuming from a VideoFreeze 19.15.2

GUI: -none- 

CLI : penPlot_restartAfterFreeze  BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: No 

Specifies the behavior of the penPlot after resuming from a video freeze. Specifies whether or not 
the pen will continue going from where it is, or if the penplot window will be erased and the pen will 
reset and start afresh from the left. 

VPX_SendCommand( “penplot_restartafterfreeze Yes” ); 

 
 

19.16 Graphics Controls 

 Specify the Eye Color for GUI graphics 19.16.1

GUI: Controls window > Display tab > Eye A or Eye B button 

CLI : penColorA intRed intGreen intBlue 

penColorB intRed intGreen intBlue 

intRed 0-255 intGreen 0-255 intBlue 0-255 

Default: penColorA: 100 255 0 (limeGreen); penColorB : 0 255 255 (cyan) 

Specifies the red, green and blue components ( 0 to 255 ) of the penPlot lines and the POG in the 
GazeSpace window and the Stimulus window. E.g. , 255 255 255 is white and 100 100 255 is a sky blue. 

VPX_SendCommand( “pencolorA 115 100 235” ); 

VPX_SendCommand( “pencolorB  0 255  0” ); // Green 

 
 



 
Arrington Research 

3/2/2016 
Page 190 

 Specify which Overlay Graphics to Display in the GazeSpace Window 19.16.2

GUI: Controls window > Display tab > Gaze checkbox matrix 

CLI : gazeGraphicsOptions +graphicsOptions 

gazeGraphicsOptions -graphicsOptions 

graphicsOptions: 

   +ROI +POG +Path +Fix +Size +Grid +Cal +Raw +Image +Time 

Default: +ROI +POG +Image +Time 

Specifies which overlay graphics to display in the GazeSpace window.  
Use -graphicsOption to exclude an option, or use +graphicsOption to include an option. 
Note: The +/- must be next to the key word, i.e., NOT separated from it by a space. 
Separate multiple arguments by spaces, as in the example here below. 
See also: stimulusGraphicsOptions;  sceneMovieGraphicsOptions 

VPX_SendCommand( “gazeGraphicsOptions +POG –Raw –ROI” ); 

 
 

 Specify which Overlay Graphics to Display in the Stimulus Window 19.16.3

GUI: Controls window > Display tab > Stim checkbox matrix 

CLI : stimulusGraphicsOptions +graphicsOption -graphicsOption 
  graphicsOptions : 
    +ROI +POG +Path +Fix +Size +Grid +Cal +Raw +Image +Time 

Default: +POG +Image 

Specifies which overlay graphics to display in the Stimulus window.  
Use -graphicsOption to exclude an option, or use +graphicsOption to include an option. 
Note: The +/- must be next to the key word, i.e., NOT separated from it by a space. 
Separate multiple arguments by spaces, as in the example here below. 
See also: gazeGraphicsOptions  

VPX_SendCommand( “stimulusGraphicsOptions +POG –Raw –ROI” ); 

 
 

 Erase Data Displays in the GazeSpace and Stimulus Windows 19.16.4

GUI: Controls window > Display tab > Erase Displays button 

CLI : eraseDisplays 

Clears the previous drawn data from the GazeSpace and Stimulus windows. 
See also:  timedErase_autoErase;  timedErase_delaySeconds 

VPX_SendCommand( “eraseDisplays” ); 

 



 
Arrington Research 

3/2/2016 
Page 191 

 Automatically Erase Display Windows 19.16.5

GUI: -none- 

CLI : timedErase_autoErase   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

Automatically erases the Stimulus and GazeSpace windows after timed delay is reached. 
See also:  timedErase_delaySeconds;  eraseDisplays 

VPX_SendCommand( “timedErase_autoErase On” ); 

VPX_SendCommand( “timedErase_ delaySeconds 6.5” ); 

 
 

 Specify Time Delay for Auto Erase 19.16.6

GUI: -none- 

CLI : timedErase_delaySeconds seconds 

seconds : floating point number  

Default: 3.5 

Specifies the time delay for automatically erasing the Stimulus and GazeSpace windows. 
See also:  timedErase_autoErase;  eraseDisplays 

VPX_SendCommand( “timedErase_autoErase On” ); 

VPX_SendCommand( “timedErase_ delaySeconds 6.5” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 192 

19.17 Stimulus Window Controls 

 Specify Stimulus Source  19.17.1

GUI: Stimuli > View Source >  

    { StimulusWindow, SceneCamera, Interactive Computer Display ... } 

CLI : viewSource options 

 options: StimulusWindow, SceneCamera, 1, 2, 3 

 

Default: StimulusWindow 

Specify the type of stimulus the subject will be viewing.  
StimulusWindow : a typical psychophysical bench experiment with the head fixed, or an HMD. 
SceneCamera : subject is looking at the real world with the HeadMounted SceneCamera recording what 
the subject is viewing. 
1, 2, etc. : typically for usability experiments; the subject is interacting with a program or web brouser on 
the computer screen; snapshots of the computer screen images are saved in a movie.  The number 
specifies which display monitor to use. 
See also: calibration_PointLocationMethod   

VPX_SendCommand( “viewSource SceneCamera” ); 



 
Arrington Research 

3/2/2016 
Page 193 

 Specify Custom Stimulus Window Size and Position 19.17.2

GUI: 1st ) select style: Stimuli > Stimulus Window Properties > Normal Adjustable Window 

2nd ) resize the window by dragging its border 

3rd ) change style: Stimuli > Stimulus Window Properties > Custom Static Position  

CLI : stimWind_CustomStatic L T R B 

 L T R B: integer pixel values based on the display space. 

Specifies a custom position and size of the Stimulus window. Where L,T,R,B correspond to the left, top, 
right and bottom physical dimensions across all monitors. The following example assumes that we have 
a secondary display placed in the virtual desktop with the tops of the two displays at the same level, 
namely zero. Further, the primary monitor is 1280 x 1024 and the secondary is 1024 x 768, such that the 
top left origin of the primary monitor is at (0,0), the top left origin of the secondary monitor is at 
(1280,0), and the extreme diagonal bottom right point is at (1280+1024,768) or (2304,768) 
stimWind_CustomStatic 1280 0 2304 768.  
Sets the custom static Stimulus window in the position specified. Displays the Stimulus window as a 
static window (no borders or title bar). The window will be always in front. This is useful if the graphics 
card does not show a second display. Custom was primarily developed to help users who have dual 
monitor display card that do not correctly tell the Windows OS that there are two devices; these are 
now rare. This does not causes the Stimulus window to be shown if it’s hidden. 
See also:  setStimulusDisplay Custom;  setWindow Stimulus Show;  stimulus_ImageHidden 

VPX_SendCommand( “stimWind_CustomStatic 1280 0 2304 768” ); 

VPX_SendCommand( “setWindow Stimulus Show” ); 



 
Arrington Research 

3/2/2016 
Page 194 

 Automatically Show the Stimulus Window upon Calibrate 19.17.3

GUI: Stimuli > Stimulus Window Properties > AutoShow upon Calibrate 

CLI : stimwind_AutoShowOnCalibrate  BoolValue 
  BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Yes 

ViewPoint has been designed to make calibration easy and fast, even when there is only one 
computer display, and when the experimenter wants to do self-testing. 

If the AutoShowOnCalibrate feature is active ViewPoint will automatically show the stimulus window 
whenever a calibration start procedure begins. 
See also:  setStimulusDisplay 1 

VPX_SendCommand( “stimwind_autoshowoncalibrate No” ); 

 
 

 Show SceneVideo in Stimulus window 19.17.1

GUI: Controls window > Scene tab > Show SceneVideo in Stimulus window checkbox 

CLI : ShowSceneVideoInStimulusWindow BoolValue 
  BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

By default the video from the the SceneCamera is displayed only in the GazeSpace (SceneCamera) 
window. This causes the SceneVideo to be displayed in the Stimulus window as well.  
Version 1.9.3.123 changed this from GUI “Stimulus Scene Video” and CLI: stimulus_SceneVideo, both 
now deprecated, because the language was unclear. 

VPX_SendCommand( “ShowSceneVideoInStimulusWindow Toggle” ); 

 



 
Arrington Research 

3/2/2016 
Page 195 

 Specify How and Where to Show Stimulus Window 19.17.2

GUI: Stimuli > Stimulus Window Properties > Normal Adjustable 

Stimuli > Stimulus Window Properties > Custom Static  

Stimuli > Stimulus Window Properties > Full Screen Monitor 1 (Primary)  

Stimuli > Stimulus Window Properties > Full Screen Monitor 2 

Stimuli > Stimulus Window Properties > Full Screen Monitor 3 

etc. 

CLI : setStimulusDisplay displayOption 

stimWind_FullDisplay displayOption // Deprecated 

displayOption : Adjustable, Custom, 1, Primary, 2, Secondary 

Default: 1 

Specifies where and how to display the stimulus window. Arguments Primary, 1, Secondary, 2, etc. 
specify that the stimulus window will be displayed full screen on these monitors. Adjustable indicates 
that the stimulus window is to be displayed as a regular adjustable-size floating window. Custom was 
primarily developed to help users who have dual monitor display card that do not correctly tell the 
Windows OS that there are two devices; these are now rare. 

Note 1: This command ONLY specifies the selection of the device on which the Stimulus window will 
be displayed (or is displayed, if the stimulus window is currently showing), it does NOT cause the 
stimulus window to be shown. There are advantages to separating these instructions for (i) selecting the 
device and for (ii) showing / hiding the window, not the least of which is isomorphism to the conceptual 
layout of the GUI menu item groupings. 

Note 2: In previous versions, prior to 2.8.3, the argument 0 corresponded to the instruction to Hide 
the stimulus window, or in some previous versions, to toggle Show / Hide. Argument 0 should no long 
be used and its effect may be unpredictable. 

See also: 

setWindow STIMULUS SHOW 

setWindow STIMULUS HIDE 

stimWind_CustomStatic 

stimWind_AutoShowOnCalibrate 

Modified: 2.8.2.52 

VPX_SendCommand( “setStimulusDisplay Seconday” ); 



 
Arrington Research 

3/2/2016 
Page 196 

19.18 Window Related Controls 

 

 Size Window 19.18.1

GUI: Resize window with mouse. 

CLI : sizeWindow windowNameString W H 

windowNameString: Main, EyeA, EyeB, EyeSpace, Controls, Status, GazeSpace, 
PenPlot, History, Events, Geometry, Observer, etc. (not filtered) 
W H: two integers describing the width and height of the window content 
rectangle. 

Sizes / resizes the specified window to the specified width and height. The left-top corner position 
remains the same; the right-bottom corner is adjusted to satisfy the new size. 
See also:  setWindow  moveWindow  settingsFile_saveWindowLayout 

VPX_SendCommand( “sizeWindow GazeSpace 640 480” ); 

 
 

 Move Window, or Move & Resize Window 19.18.2

GUI: Drag window with mouse, resize window with mouse. 

CLI : moveWindow windowNameString L T 

moveWindow windowNameString L T W H 

windowNameString: Main, EyeCamera, EyeA, EyeB, EyeSpace, Controls, Status, 
GazeSpace, PenPlot, History, Events, Geometry, etc. 

L T W H: the first two integers specify 
 the left, top corner of the window; the second two integers are optional and 
specify the width and height of the content area of the window. 

Moves the specified window so the left-top corner is at the specified location. Optionally the window 
can be resized at the same time by additionally specifying the width and height. 
If the window is Free (see setWindow Free), the location can be outside the Viewpoint parent window, 
and can be on other monitors if multiple monitors are present. 
See also:  setWindow  sizeWindow 

VPX_SendCommand( “setWindow GazeSpace Free; moveWindow GazeSpace -900 50” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 197 

 Specify ViewPoint Window State, or Windows Layout 19.18.3

GUI: Windows > { WindowName }   ( Hold the SHIFT-KEY to Toggle showing the window) 

Windows > Arrange > { Startup Layout, Larger Layout, Cascade } 

Window minimize and maximize title bar boxes. 

CLI : setWindow  windowNameString  windowState  

setWindow  windowLayout 

windowNameString:  

Main, EyeA, EyeB, EyeSpace, Controls, Status, GazeSpace, PenPlot, History, 
KeyPad, Events, Geometry, CalibrationImage, Histogram, About, Info, TorsionA,  
TorsionB, etc. 

 

windowState: Show, Hide, Maximize, Minimize, Restore, Free, Child, FreeToggle 

windowLayout: Startup, Larger, Cascade 

Allows the user to easily control the state of all ViewPoint EyeTracker windows.  
setWindow  Startup   : equivalent to: Windows > Arrange > Startup Layout (1024x768) 

setWindow  Larger    : equivalent to: Windows > Arrange > Larger Layout (1280x1024) 

setWindow  Cascade   : equivalent to: Windows > Arrange > Cascade 

Note: setWindow Stimulus Hide is different from the command stimulusGraphicsOptions –Image; the latter 
suppresses showing the bitmap image inside the Stimulus window. 
Use the Free option to allow the specified window to be moved outside the ViewPoint parent window; 
use the Child option to place it back inside the ViewPoint parent window; or FreeToggle option. 
The Maximize option make the window full screen, and the Minimize option hides the window except for 
an icon at the bottom of the screen, just as the buttons in the window title bar do; the Restore option 
returns the window to the previous state. 
See also:  moveWindow  sizeWindow  setStimulusDisplay  stimWind_AutoShowOnCalibrate  
Deprecated:  stimWind_Hide 
Version 2.9.3.124 added FreeToggle 

VPX_SendCommand( “setWindow Stimulus Show” );  

VPX_SendCommand( “setWindow GazeSpace Free” ); 

VPX_SendCommand( “setWindow PenPlot Maximize” ); 

 



 
Arrington Research 

3/2/2016 
Page 198 

 History Window Options 19.18.4

GUI: -none- 

CLI : historyOptions  +/-optionString 

  optionString: +timeStamp 

Allows greater control of the information that appears in the History window. 
Use -optionString to exclude an option, or use +optionString to include an option. 
Note: The +/- must be next to the key word, i.e., NOT separated from it by a space. 

VPX_SendCommand( “historyOptions -timeStamp” );  

// Remove timestamp from lines printed in the History window. 

 

 History User Text  19.18.5

GUI: -none- 

CLI : historyReport  “quotedString” 

say ‘quotedString’ 

The user may send text strings to the History window using these commands. This is useful in 
Settings files, to describe what has been loaded. It is also an easy way for layered applications to to 
report information. 

Version 2.9.2.2 strings can be either single or double quoted and one level of nesting (single quotes 
inside double quotes, or double quotes inside single quotes) is allowed. 

For help on Quoting Strings see section 18.9. 

VPX_SendCommand( “say ‘Hi there.’ ”); 

VPX_SendCommand( “HistoryReport ‘Hi there.’ ”); 

 
 

 Clear History Window 19.18.6

GUI: Windows > Clear History 

History window ControlBox > Clear Window (pull down menu item) 

CLI : clearHistory 

Clears the contents of the History window. 
See also: clearEvents 

VPX_SendCommand( “clearHistory” ); 

 



 
Arrington Research 

3/2/2016 
Page 199 

 Clear Events Window 19.18.7

GUI: Windows > Clear Events 

Events window ControlBox > Clear Window (pull down menu item) 

CLI : clearEvents 

Clears the contents of the Events window. 
See also: clearHistory 

VPX_SendCommand( “clearEvents” ); 

 
 

 GazeSpace MouseAction 19.18.8

GUI: Controls window > Regions tab > radio buttons 

CLI : GazeSpace_MouseAction selection 

selection : None, Content, CalibRegion, GazeNudge, Simulation, ROI 

Specifies what the mouse will do in the GazeSpace window.  

VPX_SendCommand( “GazeSpace_MouseAction Content” ); 

 
 

19.19 Settings File Commands 

 Load Settings File 19.19.1

GUI: File > Settings > Load Settings …      ^L 

CLI : settingsFile_Load  fileName 
settingsFile_Load  folderName 

 fileName: Name of the Settings file including file extension 

 folderName: Name of a folder containing Settings files to be loaded. 

Loads a Settings file of the specified fileName. Recursion is disallowed.  
Nesting depth is limited to 9. 
The fileName should include the extension. 
If a folderName is used instead of a fileName, all top level files in that folder (but not sub-folders) will be 
loaded. 
For help on Quoting Strings see section 18.9. 
See also:  settingsFile_SaveWindowLayout 

VPX_SendCommand( “settingsFile_Load  ‘researchsettings.txt’ ” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 200 

 Edit Settings File 19.19.2

GUI: File > Settings > Edit Settings File … 

CLI : settingsFile_EditDialog 

Raises a file browser window so the user can quickly view and edit files in the Settings folder. 

VPX_SendCommand( “settingsFile_EditDialog” ); 

 
 

 Verbose CLI Parsing and loading of Settings Files 19.19.3

GUI: File > Settings > Verbose Loading  

CLI : Verbose  +Setting  +Parsing 

settingsFile_Verbose  BoolValue  // deprecated 

Default: No 

Specifies whether to report verbose feedback when parsing CLI commands and loading Settings Files. 
See also:  verbose +/-Option   see: 19.28.1 

VPX_SendCommand( “verbose +Setting +Parsing” ); 

 

 Save Settings e.g. Calibrations etc. 19.19.4

GUI: File > Settings > Save Settings …      Alt-Shift-S 

CLI : settingsFile_Save Filename 

 Filename: Name of the Settings file to be saved with no extension 

Saves a Settings file with the specified fileName.  The file extension ‘.txt’ will be added, so no extension 
should be specified in the fileName string. 
See also:  settingsFile_SaveWindowLayout  settingsFile_Load 

VPX_SendComand( “settingsFile_save  ‘goodSettings’ ” );  // No extension needed 

// Creates: ‘goodSettigns.txt’ 

 
 



 
Arrington Research 

3/2/2016 
Page 201 

 Save Window Layout Settings 19.19.1

GUI: File > Settings > Save Window Layout 

CLI : 
settingsFile_SaveWindowLayout  filename 

 filename: Name of the Settings file to be saved. 

The window layout information can be saved in a special Settings file. This includes the size and position 
of the window. It is not saved as part of the standard Save Settings operation. The file extension ‘.txt’ 
will be added, so no extension should be specified in the fileName string.  
Note: If you want a Free window full screen on a second monitor, you must move it and drag it full 
screen; do not MAXIMIZE the window.  If the window is saved with the MAXIMIZE parameter then it 
will most probably maximize over the ViewPoint main window. 

See also:  settingsFile_Save  settingsFile_Load 

VPX_SendCommand( “settingsFile_SaveWindowLayout  ‘myWindowlayout_large’  ” ); 

 

// File will contain many lines including some that look like this: 

… 

setWindow CHILD   EyeA  

setWindow SHOW   EyeA  

moveWindow EyeA   1 1 350 265 

setWindow FREE   PenPlot  

setWindow SHOW   PenPlot  

moveWindow PenPlot  -1049 -391 1051 1680 

setWindow HIDE   Geometry  

setWindow HIDE   KeyPad  

… 

 
 
 

19.20 SettingsFileList  (DEPRECATED use the StateEngine ) 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

 Initialize Settings File List 19.20.1

GUI: -none- 

CLI : settingsFileList_Init 

Initializes the list for Settings file, making it ready for new Settings to be entered. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendCommand( “settingsFileList_Init” ); 

 
 



 
Arrington Research 

3/2/2016 
Page 202 

 Next Settings File in List 19.20.2

GUI: File > Settings > SettingsFileList > Next Settings File         F9 (default) 

CLI : settingsFileList_Next 

Executes the settings for the next Settings file in the SettingsFileList. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendCommand( “settingsFileList_Next” ); 

 

 Add Settings File to the List 19.20.3

GUI: -none- 

CLI : settingsFileList_AddName FileName 

FileName: Name of the Settings file to be added to the Settings file list. 

Adds a Settings file name to the Settings file list. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendCommand ( “settingsFileList_AddName subject1.txt” ); 

 

 Restart Settings File List 19.20.4

GUI: File > Settings > SettingsFileList > Restart SettingsFileList 

CLI : settingsFileList_Restart 

Re-opens the Settings file list and re-applies the settings listed in the Settings files. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendComand( “settingsFileList_Restart” ); 

 

 Toggle Autosequencer ON / OFF 19.20.5

GUI: File > Settings > SettingsFileList > Auto-Sequencer             F10  (default) 

CLI : settingsFileList_AutoSequence BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Enables or disables Settings file list sequencer. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendCommand( “settingsFileList_AutoSequence ON” ); 

 



 
Arrington Research 

3/2/2016 
Page 203 

 Specify Delay between Settings Files in List 19.20.6

GUI: -none- 

CLI : settingsFileList_SequenceSeconds TimeValue 

 TimeValue: Amount of sequence seconds. 

Creates a delay between loading Settings files from the Settings-file-list. Users may also specify 
sequence-seconds within the Settings files themselves rather than in a Settings-file-list. 

Will create a delay in the execution of Settings files from the list for as long as specified. Also note 
that the sequence seconds can be set within a Settings file itself. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 
VPX_SendCommand(“settingsFileList_SequenceSeconds 4.5”); 

 

 Randomize Settings Files  19.20.7

GUI: -none- 

CLI : settingsFileList_Randomize  

Randomizes Settings files in the list. 

Note that the SettingsFileList mechanism is deprecated in favor of the StateEngine. 

VPX_SendCommand(“settingsFileList_Randomize”); 

 

19.21 Torsion Commands 

 Start / Stop Torsion Calculations 19.21.1

GUI: Torsion window, Start / Stop button    ^T 

CLI : torsion_Calculation   BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

Starts and stops the torsion calculations. As a side effect, [ Start ] adds the Torsion lineGraph to the 
PenPlot window. 

Note: In previous PC versions this command would open and close the torsion window as well, 
because in those previous versions, torsion would be calculated if and only if the torsion window was 
open. 

See also: setWindow Torsion Show 

VPX_SendCommand( “torsion_Calculation On” ); 

 

 



 
Arrington Research 

3/2/2016 
Page 204 

 Adjust Radius of Torsion SamplingArc 19.21.1

GUI: Torsion window, Radius slider 

CLI : torsion_SampleRadius FloatValue 

 FloatValue: normalized floating point number 0.01 - 0.99 

Default: 0.30 

Adjust the radius (the distance out from the center of the pupil) of the torsion SamplingArc. The arc 
should be adjusted such that: (a) there is good variation in the striations and marks of the iris, (b) the arc 
does not include any reflections, such as the glint, that do not move with the iris, (c) the arc does not 
extend beyond the EyeCamera window.  

VPX_SendCommand( “torsion_SampleRadius 0.75” ); 

 

 Adjust Start Point of Torsion SamplingArc 19.21.2

GUI: Torsion window, Angle slider 

CLI : torsion_SampleAngle FloatDegrees 

  FloatDegrees: floating point value 0.0 to 360.0 degrees 

Default: 250 

Adjusts the starting point of the torsion SamplingArc in degrees. 
Range is from 0.0 to 360.0 degrees. 
Zero degrees is at the 3 o’clock position, 90 degrees is at the 6 o’clock position. 
An interesting demonstration and validation can be obtained on a static image by first unchecking 

the Auto-set after adjust check box and then moving the Angle slider a few degrees. This moves the start 
point of the sample vector and so the autocorrelation shows a “torsional” rotation of the same number 
of degrees. 

VPX_SendCommand( “torsion_SampleAngle 166” ); 

 

 Adjust Length of Torsion SamplingArc 19.21.3

GUI: Torsion window, ArcDeg slider 

CLI : torsion_SampleArc IntValue 

 IntValue: integer number 30 - 360 

Default: 120 

Adjust the arc length of the torsion SamplingArc, increasing clockwise. The arc should be adjusted 
such that: (a) there is good variation in the striations and marks of the iris, (b) the arc does not include 
any reflections, such as the glint, that do not move with the iris, (c) the arc does not extend beyond the 
EyeCamera window.  



 
Arrington Research 

3/2/2016 
Page 205 

VPX_SendCommand( “torsion_SampleRadius 0.75” ); 

 

 Autoset Torsion Template after Adjustments 19.21.4

GUI: Torsion window, Auto-Set after adjust checkbox 

CLI : torsion_AutoSetAfterAdjust   BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: On 

If ON, a new autocorrelation template is set whenever adjustments are made to the radius, starting 
angle, or arc length. 

VPX_SendCommand( “torsion_autosetafteradjust On” ); 

 

 Display Real-Time Torsion Data 19.21.5

GUI: Torsion window, Real-time graphics checkbox 

CLI : torsion_RealTimeGraphics   BoolValue 

 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: OFF for USB-220 systems, ON otherwise 

Specifies whether to display real-time torsion data in the torsion window. If ON the window is 
updated without apparent delay. If OFF, the window is updated about every half second. This does not 
affect the real-time data stored in the data file, but does effect the CPU load. 

VPX_SendCommand( “torsion_RealTimeGraphics On” ); 

 

 Adjust Torsion Measurement Range 19.21.6

GUI: -none- 

CLI : torsion_MeasureDegrees FloatDegrees 

Default: +/- 20.0 

Adjusts the torsion measurement range.  
Since the eye does not normally rotate about the line-of-sight more than about 20 degrees there is 

usually no need to perform the auto-correlation past this range, because increasing the range increases 
the cpu load unnecessarily. There are some situations in which this range needs to be increased, such as 
when the entire head is rotated. Depending upon the power of your computer, you may need to reduce 
the resolution of the auto-correlation via: torsion_ResolutionDegrees. 

See also:  torsion_ResolutionDegrees 

VPX_SendCommand( “torsion_MeasureDegrees 9.0” ); 

 



 
Arrington Research 

3/2/2016 
Page 206 

 Adjust Torsion Measurement Resolution 19.21.7

GUI: -none- 

CLI : torsion_ResolutionDegrees FloatDegrees 

FloatDegrees: floating point value between: 0.20 to 360.0 

Default 0.5 

Adjusts the default torsion measurement resolution. This minimum value is 0.20.  
To limit CPU load, vary this inversely with Torsion_MeasureDegrees. 
See for further discussion:  torsion_MeasureDegrees 

VPX_SendCommand( “torsion_ResolutionDegrees 0.80” ); 

 

 Set Autocorrelation Template 19.21.8

GUI: Torsion window, Set Template button 

CLI : torsion_SetTemplate 

Sets or Re-sets autocorrelation template. 
See: torsion_AutoSetAfterAdjust 

VPX_SendCommand( “torsion_SetTemplate” ); 

 

19.22 Interface Settings Commands 

 

 GazeCursor On / Off 19.22.1

GUI: Interface > CursorControl > GazeCursor    ^C 

CLI : gazeCursor_Used   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

Controls whether or not to display the gazeCursor, a transparent circle on the monitor where the 
subject is looking.  

This gazeCursor is entirely separate from the the mousePointer and will not move the mousePointer, 
unless you also select Eye Moves Mouse / cursor_Control ON. The gazeCursor is a feature of ViewPoint, 
whereas the mousePointer is part of the operating system. 

A mouseClick event can be issued at to the location of the gazeCursor, see: cursor_DwellClick and 
cursor_BlinkClick. 

VPX_SendCommand( “gazeCursor_Used Toggle” ); 

 



 
Arrington Research 

3/2/2016 
Page 207 

 GazeCursor Transparency 19.22.2

GUI: -none- 

CLI : gazeCursor_transparency   intValue 

intValue: integer in range 0 to 255 

Default: 128 

Controls the transparency of the gazeCursor. The larger the value the less transparency. 

VPX_SendCommand( “gazeCursor_Transparency 150” ); 

 

 Turn Cursor Control On / Off 19.22.3

GUI: Interface > CursorControl > Eye Moves Mouse                ^E 

CLI : cursor_Control   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

When ON, the mousePointer will be positioned where the subject is looking. This is independent of 
whether or not the gazeCursor is used. 

To see a transparent disk where the subject is looking, set: gazeCursor_Used  YES 

VPX_SendCommand( “Cursor_Control On” ); 

 

 Use Fixation to Issue Button Click  19.22.4

GUI: Interface > CursorControl > Fixation Clicks Buttons Alt + Shift + E 

CLI : cursor_DwellClick   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

If ON, a mouseClick event will be issued whenever the dwellTime exceeds the value set for 
cursor_DwellSeconds. 

VPX_SendCommand( “cursor_DwellClick On” ); 

 

 Specify Fixation Time to Issue Button Click 19.22.5

GUI: Controls window, Criteria tab, MouseClick DwellTime slider 

CLI : cursor_DwellSeconds FloatValue 

FloatValue: From 0.00 to 9.00.  

Sets the amount of time until mouse click is issued due to fixation. 

Default 3.5 seconds 

Specifies the dwellTime in seconds before a mouseClick event is issued, if cursor_DwellClick ON 



 
Arrington Research 

3/2/2016 
Page 208 

VPX_SendCommand( “cursor_DwellSeconds 2.5” ); 

 

 Use Blinks to Issue Button Click 19.22.6

GUI: Interface > Cursor Control > Blinks Click Buttons  ( toggle ) 

CLI : cursor_BlinkClick   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

When this is enabled, blinks will evoke a mouseClick event at the location of the gazeCursor. 

VPX_SendCommand( “cursor_BlinkClick On” ); 

 
  



 
Arrington Research 

3/2/2016 
Page 209 

19.23 Ethernet 

 

 Ethernet Server 19.23.1

GUI: Interface > Ethernet > Server ( toggle checkmark ) 

CLI : ethernet_server   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: On 

Normally the server is always running and should not need to be turned off, however if this seems 
necessary, it is accomplished with this command. 

VPX_SendCommand( “ethernet_server Off” ); 

 

 Ethernet Port Number 19.23.2

GUI: -none- 

CLI : ethernet_setPortNumber   unsignedInteger 

Default: 5000 

The current default Ethernet port is 5000 and should not need to be changed unless a conflict is 
detected. However if it is changed, the server will be stopped and all client connections will be lost, then 
the server will be restarted; any clients will need to be attached again manually. 

VPX_SendCommand( “ethernet_setPortNumber 5100” ); 

 

 Ethernet IP Address 19.23.3

GUI: -none- 

CLI : ethernet_setIPAddress   string 

Default: Obtained from the network interface card (NIC) 

Rarely does the server’s IP Address need to be changed, but there may be occasions when multiple 
NIC cards are installed or there is an IP address conflict with other network connections.  ViewPoint 
automatically tries to connect with the first NIC listed on the system. During startup, if more than one 
NIC is discovered, a notice will will be reported (as of version 2.9.3.128). 

If the ViewPoint IP Address is changed, the server will be stopped and all client connections will be 
lost, then the server will be restarted; any clients will need to be attached again manually.  

There is no name resolution, so you need to use the IP address not the computer name. 

VPX_SendCommand( “ethernet_setIPAddress \”192.168.1.33\” ” ); 

 



 
Arrington Research 

3/2/2016 
Page 210 

 Ethernet List IP Addresses 19.23.1

GUI: -none- 

CLI : ethernet_listIPAddresses 

Default:  

Prints information in the History window about each Network Interface Controller (NIC) installed on 
the computer. These can also be called a: network interface card, network adapter, LAN adapter or 
physical network interface. You may need to change the ethenet address that ViewPoint is using to that 
of another NIC, if more than one is installed on the computer. 

VPX_SendCommand( “ethernet_listIPAddresses” ); 

 

 Ethernet Ping Clients 19.23.1

GUI: Interface > Ping Clients 

CLI : ethernet_PingClients 

Default:  

Instructs ViewPoint to send a Ping message to all the attached clients. Each attached client should 
respond with a Pong message. When ViewPoint receives a Pong response, it calculates the total round-
trip time, and prints this time in the History window. This message includes a unique identifier number 
for each client connection. 

VPX_SendCommand( “ethernet_PingClients” ); 

 
 
 

19.24 Binocular Commands 

 Turn Binocular Mode On / Off 19.24.1

GUI: Binocular > Binocular mode ( toggle checkmark ) 

CLI : binocular_Mode   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

Turns binocular operation mode on or off. When On, the data file will automatically include the data 
from Eye_B and this data will be available in real-time via the SDK. 

VPX_SendCommand( “Binocular_Mode On” ); 

 



 
Arrington Research 

3/2/2016 
Page 211 

 Specifies Binocular Averaging 19.24.2

GUI: Binocular >  

   Show both eye positions 

   Show averaged Y-gaze positions 

   Show average of eye positions 

   Show average with parallax correction 

CLI : binocular_Averaging averageOption 

averageOption : Off, only_Y, both_XY, ParallaxCorrection 

Specifies whether to use binocular averaging and which type. 
Off – No averaging is performed. 
Only_Y : Averages only the y-values, resulting in the same y-value for each eye, while leaving the x-

values different. This can greatly reduce or eliminate errors due to torsion of the head/eyeFrame a the 
nose, but leaves vergence information 

Both_XY : This yields a single point that is the average of the two eye positions. 
ParallaxCorrection : Same as Both_XY, but also applies parallax correction based on vergence. 

VPX_SendCommand( “binocular_Averaging  both_XY ” ); 

 

 Specifies which Eye to Calibrate 19.24.3

GUI: EyeSpace window, Pull Down List > { Eye A Only,  Eye B Only,  Both Eyes } 

CLI : calibration_eyeTarget eyeTraget 

eyeTraget: EyeA, EyeB, Both 

Default: Both 

Specifies whether to calibrate both eyes at the same time or to do one or the other eye separately. This 
is particularly useful if you already have a good calibration for one eye and you do not want to mess up 
that calibration while trying to fix the calibration of the other eye. 

VPX_SendCommand( “calibration_eyeTarget Both ” ); 

 



 
Arrington Research 

3/2/2016 
Page 212 

19.25 System Files & Applications Related 

 Launch Application with Command Line Options 19.25.1

GUI: -none- 

CLI : launchApp  applicationName  argumentsToApp 

applicationName: The name of the application to launch 

argumentsToApp: command line arguments may be flags, input/output file names, etc. 

SDK: VPX_LaunchApp( applicationName, argsToApp ); 

A general purpose command to launch an application and to provide it with optional arguments.  
Note: Must use full path for file names if they are not in the default location for the application. 
Special: This command will enable playing stimulus movies.  
WARNING: The CLI strings are parsed by the ViewPoint application, therefore you cannot use this CLI 
string to launch the ViewPoint application itself, instead use: 

   VPX_LaunchApp(“ViewPoint.exe”,””); 
See also:  systemOpen,  quitViewPoint,  VPX_LaunchApp 

 Example 1 

VPX_LaunchApp(“ViewPoint.exe”, “ “); // Layered app launched ViewPoint 

int running = VPX_GetStatus( VPX_STATUS_ViewPointIsRunning );  

// Wait until true, so parser is running. 

 Example 2 

VPX_SendCommand (“launchApp ViewPoint.exe” ); // WRONG 

// PARSE ERROR becaue ViewPoint (and so the ViewPoint parser) is NOT RUNNING 

 Example 3 

fKey_Cmd 9 { launchApp C:\Windows\Explorer.exe Data }  // Opens the Data Folder 

// DANGER: If Explorer.exe is in any other folder  

//  or subfolder then it is a virus, spyware, trojan or worm! 

 Example 4 

launchApp C:\Windows\Explorer . // The dot means the current folder, here ~/ViewPoint/ 

 



 
Arrington Research 

3/2/2016 
Page 213 

 SystemOpen 19.25.2

GUI: -Various File menu and other commands- 

CLI : systemOpen  string 

string = fileName, folderName, HTTP-path 

General purpose instruction to open a system file, folder, or an HTTP address. 
The string must be inside quotes. 
WARNING: Currently when using a default folder, such as Data\ you must following it with a backward-
slash before specifying a file name. 
See also: launchApp,  VPX_LaunchApp 

VPX_SendCommand (“systemOpen ‘C:\\ARI\Misc\myFile.txt” ); 

systemOpen  "http://www.arringtonresearch.com/torsion.html" 

systemOpen  “Data\123.txt”  // The ViewPoint/Data folder 

 

 Quit ViewPoint  19.25.3

GUI: File > Quit 

CLI : quitViewPoint 

Terminates the ViewPoint EyeTracker application. 
See also: confirmQuit 

VPX_SendCommand (“quitViewPoint” ); 

 

 

 Confirm Quit 19.25.4

GUI: -none- 

CLI : confirmQuit   BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: On 

Specifies whether ViewPoint should display a dialog box that asks the user to confirm a quit request, 
before terminating the program. It is suggested that this specification be placed in the Settings file: 
~/ViewPoint/Startup/StartUp.txt 
See also: quitViewPoint 
Added: 2.8.4 

VPX_SendCommand (“confirmQuit No” ); 



 
Arrington Research 

3/2/2016 
Page 214 

 

 Specify Default Folder Paths 19.25.5

GUI: -none- 

CLI : setPath folderID pathString 

folderID:  VIEWPOINT:   IMAGES:  DATA:  SETTINGS:  SOUNDS:   

 DOCUMENTATION:  CALIBRATION:        

pathString : full path string or keyterm: DEFAULT_PATH 

Specifies the current default folder path for important ViewPoint directories. 
The special keyTerm DEFAULT_PATH may be used to reset the path to the original ViewPoint default path 
string. Usually this is a folder directly under the main ViewPoint folder. 
Note: The colon is part of the folderID and must be included, e.g., IMAGES: 

Note: paths may be set across machines, for example via mapped network drives, however saving data 
across such a path may cause delays or data loss. 
Version 2.8.3.44 improves behavior as follows: 
Accepts both forward slashes and backward slashes, and convert them to forwards 
Appends a final slash at the end of the string, if it was not included by the user 
Tests that the path exists and reports an error if it does not 
See also: VPX_GetViewPointHomeFolder( pathString ); 

setPath IMAGES: DEFAULT_PATH 

setPath IMAGES: "C:/ARI/Global/Images/" 



 
Arrington Research 

3/2/2016 
Page 215 

19.26 FKey  

 Associate CLI’s with FKeys 19.26.1

GUI: -none-  

CLI : Fkey_cmd  fKeyNumber  { commandString } 

fKeyNumber : integer in { 1 to 12 } 

commandString : any valid command 

Assigns CLI commands to FKeys. It is a very useful to customize the Fkeys for your needs. 
These FKey associations can be viewed in the Info panel from menu: Help > Info > ShortCuts tab 
Everything inside the Deferred Command Block (i.e. evaluated later) must be in curly braces (see 19.1 
and 18.7.2.  More than one command, separated by semicolons may be inside the curly braces.  
Note: Do not put quotes around commands; this method is obsolete and may no longer work properly. 
Restore defaults with: fkey_default 

VPX_SendCommand ( “fkey_cmd 12 { dataFile_NewUnique } “) ; 

VPX_SendCommand ( “fkey_cmd 11 { stimulus_playSoundFile ‘No Way .wav’ }  “); 



 
Arrington Research 

3/2/2016 
Page 216 

19.27 TTL 

 Associate CLI’s with TTL Voltage Changes 19.27.1

GUI: -none- 

CLI : ttl_cmd  signedChannel  { commandString } 

signedChannel : +/- just before an integer in { 0 to 7 } 

commandString : any valid command 

Allows CLI commands to be associated with incoming TTL voltage changes, high or low. 
These associations can be viewed in the Info panel from menu: Help > Info > TTL Cmds tab. 
Everything inside the deferred Command Block (i.e. evaluated later) must be in curly braces (see 19.1 
and 18.7.2.  More than one command, separated by semicolons may be inside the curly braces; see  
Note: Do not put quotes around the TTL command string; this method is obsolete and may no longer 
work properly. 
Restore defaults with: ttl_default 
Requires the TTL option to send TTL voltages, but can be testes using: ttl_simulate 

VPX_SendCommand (“ttl_cmd +0 {dataFile_Pause On}”); 

VPX_SendCommand( “ttl_cmd -0 {dataFile_Pause Off}” ); 

VPX_SendCommand( “ttl_cmd +1 {dataFile_NewUnique}” ); 

VPX_SendCommand( “ttl_cmd -1 {historyReport \"TTL ch#1 LO\} ” ); 

VPX_SendCommand( “ttl_cmd +2 {dataFile_InsertMarker 2}” ); 

 
 

 Set TTL Output Voltages 19.27.2

GUI: -none- 

CLI : ttl_out signedChannel 

signedChannel : +/- just before an integer in { 0 to 7 } 

Provides a mechanism to easily set the TTL output voltages. 
There must be no space between the sign and the number. 
Requires the TTL option. 
Be sure to de-select ViewPoint~Voltage menu item: Options > TTL > TTL output of ROI code 

VPX_SendCommand( “ttl_out -0” ); // set TTL channel 0 LO 

VPX_SendCommand( “ttl_out +7” ); // set TTL channel 7 HI 

 



 
Arrington Research 

3/2/2016 
Page 217 

 Simulate Change in TTL Input 19.27.3

GUI: -none- 

CLI : ttl_simulate signedChannel 

signedChannel : +/- just before an integer in { 0 to 7 } 

Simulates a TTL signal coming from the TTL hardware option, regardless of whether or not this 
hardware is installed. This is very useful for development and debugging. 

Does not require the TTL option. 

VPX_SendCommand( “ttl_simulate +0” ); // simulate TTL channel 0 HI event 

 
 

 Print TTL Values in the History Window 19.27.4

GUI: -none- 

CLI : ttl_values 

The current TTL-In and the TTL-Out values are reported in the History window.  

VPX_SendCommand( “ttl_values );  

// 

// The following is subject to change! 

int inValues = VPX_GetStatus( VPX_STATUS_TTL_InValues ); // subject to change 

int outValues = VPX_GetStatus( VPX_STATUS_TTL_OutValues ); // subject to change 

// The SDK interface returns an integer with the high channels bit coded  

// as ones and the low channels bit coded as zeroes.  

// May not be available in the future through the VPX_GetStatus function. 



 
Arrington Research 

3/2/2016 
Page 218 

 

 Set TTL Output to Indicate Data Quality Codes 19.27.5

GUI: -none- 

CLI : ttl_out_quality channel levelString 

channel : integer in { 0 to 7 } 

levelString : OFF, or any of VPX_QUALITY_* 

VPX_QUALITY_PupilScanFailed  

VPX_QUALITY_PupilFitFailed 

VPX_QUALITY_PupilCriteriaFailed  

VPX_QUALITY_PupilFallBack  

VPX_QUALITY_PupilOnlyIsGood  

VPX_QUALITY_GlintIsGood  

A TTL output channel can be specified to indicate when the data quality value is greater than or 
equal to ( >= ) the quality criterion level. 

The level strings are identical to the VPX_QUALITY_* constants defined in the VPX.h file. The best 
quality is level == QUALITY_GlintIsGood, poorer quality raises the quality level. Setting the quality 
criterion to VPX_QUALITY_PupilScanFailed will cause the TTL channel to always be high, because the 
data quality value is always greater than or equal to this.  

Be sure to de-select ViewPoint~Voltage menu item: Options > TTL > TTL output of ROI code 
See also:  VPX_GetDataQuality, verbose +ttl_out 

VPX_SendCommand( “ttl_out_quality 0 VPX_QUALITY_PupilFallBack” ); 



 
Arrington Research 

3/2/2016 
Page 219 

 Misc.19.28  

 Specify Verbose Information to Send to History Window 19.28.1

GUI: -none- 

CLI : verbose +/-activityType 

activityType : see list here below 

Allows fine control over the type of verbose information sent to the History window. 
The reports are turned on or off by preceding the keyTerm with a plus (+) or minus (-), respectively. 

There can be no space between the sign and the keyTerm. 
This is used for debugging and the details of what is reported may change without notice.  
The following arguments can be used to turn reporting on or off. 

+setting 
+parsing 
+ttl_out  
+ttl_cmd 
+frameGrabber 
+videoTiming 
+server 
+insertMark 
+insertString 
+insertUserTag   
+calibration     
+nameList  // this includes things like the pictureList actions 

VPX_SendCommand ( “verbose  –calibration  +settings ” ); 

 

 Status Dump 19.28.2

GUI: -none- 

CLI : status_dump 

Reports the values of various Status variable in the History window. The variables are in general the 
same as those available via the SDK function: VPX_GetStatus. 

See VPX_GetStatus for list of VPX_STATUS_* variables  

VPX_SendCommand( “status_dump” );  // Dumps values in ViewPoint History window. 

bool calibrating = VPX_GetStatus(VPX_STATUS_CalibrationInProgress): 

 



 
Arrington Research 

3/2/2016 
Page 220 

 Update Eye Data on Request 19.28.3

GUI: Alt-Shift-U 

CLI : updateData 

Some programs want as much CPU time as they can get, so they would like to have ViewPoint video 
image processing turned off until fresh data is needed. This command updates the eye data based on 
the most recent video image in memory (on 60 Hz systems this memory is constantly being updated via 
direct memory access (DMA) by the video capture driver).  

Note: Using this assumes that all video is frozen (videoFreezeSync ON); sending an updateData 
command while NOT frozen may cause a glitch in the data timing. 

VPX_SendCommand ( “updateData” ); 

 

 Set Status Window Update Rate for FPS Field 19.28.4

GUI: -none- 

CLI : fpsUpdate nth_Interupt 

nth_Interupt : integer 

Controls for rate of update of the FPS (Frames Per Second) value in the PenPlot window. The 
argument may be any positive number. An argument of 1 would cause the FPS calculation to be updated 
every video interrupt (frame or field), 2 would be every 2nd, etc. 

High speed digital cameras may apply their own data thinning. 

VPX_SendCommand ( “fpsUpdate 3” ); 

 

 SDK Debug Mode 19.28.5

GUI: -none- 

CLI : debugSDK BoolValue 

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle 

Default: Off 

This command will add debugging capability for the DLL based SDK. 

VPX_SendCommand (“debugSDK YES”); // The DLL attached directly to ViewPoint 

VPX_DebugSDK(1); // The DLL that the layered application is talking to. 

 



 
Arrington Research 

3/2/2016 
Page 221 

 Priority 19.28.6

GUI: -none- 

CLI : setPriority  priorityLevel 

priorityLevel: Normal, Above, High, RealTime 

Default: Normal, but some threads may have higher priority. 

See Microsoft documentation for: SetPriorityClass 
Added in version 2.9.3.116 

VPX_SendCommand (“setPriority High”);  

  

 Specify ViewPoint Generated Events 19.28.7

GUI: -none- 

CLI : vpx_event  +option  -option 

option: videoSynch 

This provides a mechanism to control (thin) the number of events that ViewPoint sends out. The 
command vpx_event followed by one or more options that are immediately preceded (no spaces) by a + 
or - character. 

Note: unnecessary messages will unnecessarily consume system resources. 
See:  VPX_VIDEO_SyncSignal 

VPX_SendCommand(“vpx_event +videoSynch”); 

 

19.29 Parser Instructions 

 Comment 19.29.1

GUI: -none- 

CLI : // 

Use double forward slashes // to tell the CLI parser to ignore everything to the right of these slashes. 
They can be used anywhere on a command line. 

Deprecated old CLI command:  COMMENT 
// Ignore all of this comment line 

Say “Hi there” // Then ignore this other stuff 

 



 
Arrington Research 

3/2/2016 
Page 222 

 End of Settings File Command 19.29.2

GUI: -none- 

CLI : END 

The command END should be placed by itself on the final line of a Settings file. This provides a way 
to verify that all the command lines in the file were read. ViewPoint reports "Settings read successfully" 
when this command is reached. 
END 

 



 
Arrington Research 

3/2/2016 
Page 223 

Chapter 20. Software Developers Kit (SDK) & API 

20.1    General  

A third party application (for example, your application) may interact with the ViewPoint 
EyeTracker® by compiling with the VPX_InterApp.lib file, a library file. At run time your program will 
dynamically link to the VPX_InterApp.DLL, a Dynamic-Link Library file. All of the ViewPoint inter-
application communication constants, data types and functions begin with the prefix VPX_ and are 
specified in the VPX.h file.  

Your application may call the VPX_ routines VPX_LaunchApp(“ViewPoint.exe”, “ ”) and 
VPX_SendCommand(“quitViewPoint”) to control when the ViewPoint EyeTracker®, application is 
running. If the remote application will provide its own control settings to ViewPoint, then it may be 
desirable to launch only the EyeCamera window, by calling:  
VPX_LaunchApp(“ViewPoint.exe”, “ -hideMain –freeEyeCamera ”)  // Case Sensitive Flags 

The command line argument –minimized  allows access to the main ViewPoint program window 
via the minimized icon, -hideMain  makes the main window of ViewPoint completely inaccessible.  

The flag –freeEyeCamera  launches ViewPoint with the eye camera window as a free floating 
window. 

These flags are case sensitive! 

Note: currently, if launched minimized, the splash window is not presented. 

Your application may access ViewPoint data at any time. It should be noted that employing a tight 
polling loop is a poor programming practice, because it unnecessarily consumes computer CPU time. If 
only occasional updates are required, a timer would probably be the preferred method (see 
MSWindows SetTimer function). If your application needs to respond immediately every time the data 
values are updated, status is changed, etc., then it should register a CallbackFunction.  

20.2  RealTime Callback Functions 

Layered applications can respond to ViewPoint data and status changes quickly and easily (i.e., be 
event driven) by registering a CallbackFunction.  The function signature (ie, the number, type and order 
of the arguments) must be exactly the same as specified, however the users can put whatever they need 
in the body. Here is an example: 
int theCallbackFunction( int msg, int subMsg, int param1, int param2, void* userPtr ); 

int theCallbackFunction( int msg, int subMsg, int param1, int param2, void* userPtr ) 

{ 

if ( ( VPX_DAT_FRESH == msg )&& ( EYE_A == subMsg ) ) { 

 VPX_RealPoint gp; // a structure with two floats for (x,y) values 

 VPX_GetGazePoint2( EYE_A, &gp ); // pass variable by reference 

 printf("GazePoint = ( %g, %g ) \n", gp.x, gp.y ); 

 } 

} 

VPX_InsertCallback( &theCallbackFunction, this ); 

 

The userPtr is typically used for the C++ this value. 



 
Arrington Research 

3/2/2016 
Page 224 

20.3   Registering to Receive WindowMessages (Depreciated) 

Registering to receive notifications of fresh data is a multi-step process:  
Obtain the unique message identifier used by ViewPoint for inter-process communication:  

const static UINT wm_VPX_message = RegisterWindowMessage(VPX_MESSAGE).  

The window(s) that wish to receive notification must register to receive it by calling:  

VPX_InsertMessageRequest( m_hWnd, wm_VPX_message ).  
 

More than one window in an application may request notifications; however no window should 
make more than one request.  

Your program must listen for the notifications. This may be done in several ways. If you are using 
MFC message maps, then you should add a mapping, e.g.:  

ON_REGISTERED_MESSAGE( wm_VPX_message, OnVPX_message ).  
If you are using Win32, then you will want to listen for the wm_VPX_message notification just as 

you would listen for a WM_PAINT message.  
When a wm_VPX_message is received, your message handling routine should determine the type of 

the notification, as follows:  
WORD notificationCode = HIWORD (wParam).  

This notificationCode may then be used in a switch statement that uses case constants defined in 
the VPX.h file. Among others, these include: VPX_DAT_FRESH, VPX_ROI_CHANGE, and notifications 
relating to the presentation of Calibration Point Stimuli. Refer to 0  for a complete list.  

IMPORTANT:  A finite number of message windows may register a VPX_InsertMessageRequest 
at one time (currently ten), after which notification requests will be refused. Your application 
should always make sure that each requesting window successfully removes its request for 
notification before the window is destroyed or before the program terminates, by calling: 
VPX_RemoveMessageRequest(m_hWnd).  

The ViewPoint EyeTracker® Status window contains the field DLL sharing. This shows the number of 
windows that are currently registered to receive notifications. You may monitor this value during 
program development to make sure that terminating your application also decrements this value. If you 
find that all requests are used up, the only way to reset this list is to terminate every application that 
dynamically links to the VPX_InterApp.DLL.  

Note 1:  The VPX_Set_x routines work by directly sending values to the ViewPoint EyeTracker®.  
Any commands sent before ViewPoint is launched, will have no effect on the initial startup values 
of ViewPoint.  

Note 2:  ViewPoint does not send out notifications when control values are changed, so unless 
the remote application explicitly sets the ViewPoint values, the remote applications control values 

(e.g. of sliders) will not accurately reflect the ViewPoint EyeTracker® application control values.  

We encourage users and third party developers to work with us in developing this interface. We 
take suggestions and usability reports very seriously.  



 
Arrington Research 

3/2/2016 
Page 225 

 Example SDK Code (Deprecated method) 20.3.1

Your application must first register with the VPX_InterApp.lib by doing the following for each 
window procedure (WinProc) that desires notification:  

 

if ( uniqueMessageId == 0 ) {  

 uniqueMessageId = RegisterWindowMessage( VPX_MESSAGE );  

 VPX_InsertMessageRequest( hWnd, uniqueMessageId );  

}  

 
After registering, the WinProc should listen for notifications:  

 
LRESULT CALLBACK WndProc ( HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam )  
{  
 WORD notificationCode = HIWORD(wParam) ;  
 if ( message == uniqueMessageId ) {  
  switch ( notificationCode )  
  {  
   case VPX_DAT_FRESH :  
    {  
     EyeType eye = LOWORD ( wParam );  
     showFreshData( eye graphicsWindow );  
     
    } break; 

 

20.4   Data Quality Codes  

A VPX_DAT_FRESH is sent and the SDK application is responsible for obtaining the quality code and 
making a decision as to what levels of quality are appropriate for various situations. We highly 
recommend that you use the constants provided, rather than testing the integer value, as these are not 
guaranteed to remain unchanged. Nevertheless, the hierarchical relationships are expected to remain 
intact. For example:  
VPX_GetDataQuality2( eye, &quality );  

switch (quality)  

{  

 case VPX_QUALITY_PupilScanFailed: showGaze(false); break;  

 case VPX_QUALITY_PupilFitFailed: showGaze(false); break;  

 case VPX_QUALITY_PupilCriteriaFailed: showGaze(false); break;  

 case VPX_QUALITY_PupilFallBack: showGaze(true ); break;  

 case VPX_QUALITY_PupilOnlyIsGood: showGaze(true ); break;  

 case VPX_QUALITY_GlintIsGood: showGaze(true ); break;  

}  

Data records are constantly stored, because the data quality may vary with different sources. For 
example, data may be good from one eye, and a wink occurred in the other eye, or both eyes are closed, 
but other data is still good. Data sections now contain individual quality columns, as needed.  

20.5   Sending CLI’s via the SDK  

The ViewPoint EyeTracker® Software Developers Kit (SDK) provides a routine that allows sending 
Command Line Interface (CLI) commands directly to the ViewPoint EyeTracker. This means that the same 



 
Arrington Research 

3/2/2016 
Page 226 

command strings that are loaded from Settings files can be issued via the SDK either on the same 
machine or via Ethernet from another machine. An important benefit is that this allows passing 
textStrings and fileNames.  

Note: ViewPoint expects 8-bit chars. 

int result = VPX_SendCommand( char *cmd );  

VPX_SendCommand("dataFile_NewName rabbitPictureData");  

VPX_SendCommand("dataFile_InsertString \”Showing Picture of a Rabbit \” ");  

VPX_SendCommand("settingsFile_Load RabbitPictureROI.txt");  

 
The function returns an integer result value that provides feedback about the success or problems 

encountered. See VPX.h for a list of return codes.  
Note: All VPX_Set* functions are deprecated in favor of the single VPX_SendCommand function. 

20.6   High Precision Timing  

High Precision timing (HPT) with resolution in the order of 0.0000025, i.e., 2.5E-6 or 2.5 
microseconds, is available via the SDK function call.   

The function returns the difference between the pdInHoldSeconds argument and the current time. 
This function will automatically update the pdInHoldTime with the current time for use with the next 
call, if iFlags is RESET_PRECISE_HOLD_TIME.  When SINCE_PRECISE_INIT_TIME is passed as the 
pInHoldSeconds , it returns the time since the initialization of either the DLL of the System, depending 
upon the second argument.  

 
The four combinations are shown here below:  

 

secondsSinceLastSomeEvent =  

   VPX_GetPrecisionDeltaTime( &(pv.someEventTime),   RESET_PRECISE_HOLD_TIME ); 

 

secondsSinceLaunchingTheApp = 

   VPX_GetPrecisionDeltaTime( &(pv.appLaunchTime),  LEAVE_PRECISE_HOLD_TIME ); 

 

secondsSinceStartingTheDLL = 

   VPX_GetPrecisionDeltaTime( SINCE_PRECISE_INIT_TIME, SINCE_DLL_INIT_TIME ); 

 

secondsSinceSystemBooted =  

   VPX_GetPrecisionDeltaTime( SINCE_PRECISE_INIT_TIME, SINCE_SYSTEM_INIT_TIME );  

 

20.7   DLL Version Checking  

All applications using the ViewPoint SDK should include the following check for a possible mismatch 
between the version of the DLL (loaded at runtime) and the version of the SDK library (prototypes and 
constants) that was compiled into the application. Note that as of version 2.9.3.115, only the first three 
values of the version quad are checked, the last value is for small patches that do not effect 
interapplication communication. 



 
Arrington Research 

3/2/2016 
Page 227 

 
 

BOOL versionMismatch = VPX_VersionMismatch (VPX_SDK_VERSION); 

double dllVersion = VPX_GetDLLVersion(); 

if ( VPX_SDK_VERSION != dllVersion ) doSomething(); 

 

20.8   SDK Trouble Shooting 

This section describes some of the common problems users encounter when programming with the 
SDK and how to solve them. 

 Different DLLs 20.8.1

The most common problem is when the user makes a copy of the DLL, such that ViewPoint is putting 
data into the DLL that is attached to it, while the layed application is trying to get data from another DLL 
that is attached to that. Imaging two people agree to meet in Central Park, but one is in Central Park 
New York, while the other is in Central Park Denver.  

It is possible for a layered application to use a separate DLL, either on the same machine or on a 
different machine, but the separate DLL must establish a link with ViewPoint via the Ethernet. 

The symptom is that the layered application only gets zero values from the separate DLL. 
There are two solutions: (i) make sure that ViewPoint and the layed application are using same DLL, 

or (ii) connect the separate DLL to ViewPoint via Ethernet using the ViewPointServer and ViewPointClient 
software included. 

Select menu item: Help > Info > SysInfo tab and look at the DLL path: line to view the full path file name 
of the DLL that is loaded and being used by the ViewPoint application (as of version 2.9.3.116). 

 Different DLL Versions 20.8.2

DLL version changes are reflected in whole number program version changes. Changes in the 
decimal part of the version number should only reflect bug fixes, patches, and small incremental 
changes.  In general, even with a version mismatch, many of the functions will still work, but the user 
should verify that the results are accurate. 

20.9   SDK Data Access Functions  

There are many functions provided to access ViewPoint data and the current state of the ViewPoint 
program. The ViewPoint PenPlot window uses many of these functions to access the data that is plotted, 
so this can be used for validation. 

Some of these functions have dual roles – the returned values may be different if the 3DViewPoint 
or 3DWorkSpace products are being run; details are described in the documentation for these products. 

Currently, the legacy monocular only functions still exists and return the value for EYE_A; but these 
are deprecated in favor of the newer binocular functions that generally end with the number 2 and 
require that Eye_A or Eye_B is specified, for example: 
 VPX_GetSomething( &something ); // Always returns EYE_A value. 

 VPX_GetSomething2( EYE_B, &something); 



 
Arrington Research 

3/2/2016 
Page 228 

Chapter 21. SDK Functions 

21.1 GazeData 

 GetGazePoint 21.1.1

int VPX_GetGazePoint( VPX_RealPoint* gp ); // EYE_A 

int VPX_GetGazePoint2( VPX_EyeType eyn, VPX_RealPoint* gp ); 

int VPX_GetGazePointSmoothed( VPX_RealPoint* gp ); 

int VPX_GetGazePointSmoothed2( VPX_EyeType eyn, VPX_RealPoint* gp ); 

int VPX_GetGazePointCorrected2( VPX_EyeType eyn, VPX_RealPoint* gp ); 

Units:  Normalized GazeSpace coordinates. 

Retrieves the calculated Position of Gaze (POG). 
Monocular ViewPoint uses Eye_A by default. 
GazePoint returns the pure POG, GazePointSmoothed returns the smoothed POG, and 

GazePointCorrected returns the corrected POG that may include smoothing, averaging, parallax 
correction, nudging, etc… 

Returns 1. 
*** Data comes from 3DViewPoint or 3DWorkSpace when using these products and data will be 

different. 
See also:  VPX_GetPupilPoint,  VPX_GetGlintPoint 

VPX_RealPoint gp ; 

VPX_GetGazePointCorrected2( EYE_A, &gp ); 

printf( “X: %g , Y: %g “, gp.x, gp.y ); 

 



 
Arrington Research 

3/2/2016 
Page 229 

 GetGazeBinocular 21.1.2

int VPX_GetGazeBinocular( VPX_RealPoint *gb ); 

Units:  Normalized GazeSpace coordinates. 

This is included to provide a single function that will work well regardless of Monocular/Binocular 
settings – it provides “one stop shopping”, so layered code doesn’t need to worry about the ViewPoint 
configuration. 

Retrieves the corrected Binocular Position of Gaze (POG) in normalized coordinates.  The Binocular 
POG is calculated using the GazePointCorrected values from EYE_A and EYE_B.  The Binocular POG 
value and data fresh update are dependent on the binocular mode and averaging setting.  Below are 
the rules. 

Monocular or no binocular averaging: 
  Value same as EYE_A; EYE_A does the update. 
Binocular and binocular averaging has 2 gaze points (averaging Y only): 
  Value same as EYE_A; EYE_A does the update. 
Binocular and binocular averaging has 1 gaze point (averaging X/Y with/without parallax): 
  Value is the averaged EYE_A and EYE_B POG; EYE_A and EYE_B both do the update. 

Caution: THERE MAY BE TWICE AS MANY UPDATES IN THIS MODE. 

Returns 1. 
See also:  VPX_GetGazePointCorrected2,  VPX_GetVelocityBinocular 

VPX_RealPoint gb ; 

VPX_GetGazeBinocular( &gb ); 

printf( “ X: %g , Y: %g “, gb.x, gb.y ); 

 



 
Arrington Research 

3/2/2016 
Page 230 

 GetGazeAngle 21.1.3

int VPX_GetGazeAngle2( VPX_EyeType eyn, VPX_RealPoint *ga ); 

int VPX_GetGazeAngleSmoothed2( VPX_EyeType eyn, VPX_RealPoint *ga ); 

int VPX_GetGazeAngleCorrected2( VPX_EyeType eyn, VPX_RealPoint *ga ); 

Units:  Degrees 

Retrieves the calculated Angle of Gaze (AOG) in degrees. 
GazeAngle returns the pure AOG, GazeAngleSmoothed returns the smoothed AOG, and 

GazeAngleCorrected returns the corrected AOG that may include smoothing, averaging, parallax 
correction, nudging, etc… 

Note: In 2D products, these angles are from trigonometric calculations based on the values that the 
user has measured and set in the Geometry window, for the Stimulus window size (horizontal & vertical) 
and the viewing distance. This Geometry window is NOT for use with 3DWorkSpace or 3DViewPoint. 

*** 3DWorkSpace & 3DViewPoint set these values when then are running.  
Returns 1. 
See also:  VPX_GetMeasuredScreenSize,  VPX_GetMeasuredViewingDistance 

VPX_RealPoint ga ; 

VPX_GetGazeAngleCorrected2( EYE_A, &ga ); 

printf( “ X: %g , Y: %g “, ga.x, ga.y ); 

 



 
Arrington Research 

3/2/2016 
Page 231 

 GetTotalVelocity 21.1.4

int VPX_GetTotalVelocity( double* velocity); // EYE_A *velocity ); 

int VPX_GetTotalVelocity2( VPX_EyeType eyn, double* velocity ); 

3DViewPoint & 3DWorkSpace units: degrees per second. 
ViewPoint units: qualitative derivative of normalized GazeSpace coordinates. 

Retrieves the TotalVelocity of movement in the (x,y) plane. That is, the first derivative of the 
(corrected) POG for either Eye_A, or Eye_B if binocular mode is on.   

Unlike the ComponentVelocities, the TotalVelocity is positive in any direction. You can obtain a total 
velocity from the ComponentVelocities using the Pythagorean theorem. 

Monocular ViewPoint uses Eye_A by default.  
3DWorkSpace & 3DViewPoint products set these values when they play back a 3D data file, but they are set by 

ViewPoint when it is sending data to the 3D products. 
Returns 1. 
See also: VPX_GetComponentVelocity,  VPX_GetVelocityBinocular 
         VPX_GetGazePointCorrected2, VPX_GetFixationSeconds 

double velocity ; 

VPX_GetTotalVelocity2 ( EYE_A, &velocity ); 

printf( “ Velocity: %g “, velocity ); 

 

 GetComponentVelocity 21.1.5

int VPX_GetComponentVelocity( VPX_RealPoint *velocityComponents ); 

int VPX_GetComponentVelocity2( VPX_EyeType eye, VPX_RealPoint *veloComponents); 

3DViewPoint & 3DWorkSpace units: degrees per second. 
ViewPoint units: qualitative 

Retrieves the x- and y-components of the eye movement velocity for either Eye_A, or Eye_B if 
binocular mode is on. Monocular ViewPoint uses Eye_A by default.  

Unlike TotalVelocity the ComponentVelocities can be positive or negative depending on the  
direction.  

3DWorkSpace & 3DViewPoint products set these values when then are running. 
Returns 1. 
See also:  VPX_GetTotalVelocity,  VPX_GetVelocityBinocular 

VPX_RealPoint cv ; 

VPX_GetComponentVelocity2( Eye_A, &cv ); 

printf( “ dx/dt: %g , dy/dt: %g “, cv.x, cv.y ); 



 
Arrington Research 

3/2/2016 
Page 232 

 GetVelocityBinocular 21.1.6

int VPX_GetVelocityBinocular( double *velocity ) ; 

Retrieves the total BinocularVelocity of movement in the (x,y) plane. That is, the first derivative of 
the (corrected) POG from both Eye_A and Eye_B.  The BinocularVelocity value and data fresh update 
are dependent on the binocular mode and averaging setting.   

Below are the rules. 
Monocular or no binocular averaging: 
  Value same as EYE_A; EYE_A does the update. 
Binocular and binocular averaging has 2 gaze points (averaging Y only): 
  Value same as EYE_A; EYE_A does the update. 
Binocular and binocular averaging has 1 gaze point (averaging X/Y with/without parallax): 
  Value is calculated from either EYE_A or EYE_B POG; EYE_A and EYE_B both do the update. 
Returns 0 on success, non-zero otherwise. 
See also:  VPX_GetTotalVelocity,  VPX_GetComponentVelocity 

double velocity ; 

VPX_GetVelocityBinocular ( &velocity ); 

printf( “ Velocity: %g “, velocity ); 

 
 
 

 
  



 
Arrington Research 

3/2/2016 
Page 233 

21.2 3D-Data 

 GetHeadPositionAngle 21.2.1

int VPX_GetHeadPositionAngle ( VPX_PositionAngle *hpa ); 

Subject to Change! 
3DWorkSpace & 3DViewPoint products only. 
Retrieves the 6DOF (x,y,z,roll,pitch,yaw) data values. 
CRITICAL: User MUST call the VPX_InitializeSDK macro at application startup to setup the SDK version 
and VPX_PositionAngle size; therwise this function will return VPX_ERROR_InvalidStructSize or 
VPX_ERROR_InvalidStructVersion. 
Returns VPX_NO_ERROR on success, one of VPX_SDKFunctionResult errors otherwise. 
Currently returns one of: 
VPX_ERROR_InvalidArgPtr  // hpa is NULL. 
VPX_ERROR_InvalidStructSize  // SDK structure sizeof VPX_PositionAngle does not match the DLL. 
You must call VPX_InitializeSDK and build your application with the same version as the DLL you are 
loading. 
VPX_ERROR_InvalidSDKVersion  // SDK version does not match the DLL. You must call 
VPX_InitializeSDK and build your application with the same SDK version as the DLL you are loading. 
See also:  VPX_PositionAngle  

VPX_PositionAngle hpa; 

hpa.version = VPX_SDK_VERSION; 

hpa.size = sizeof(VPX_PositionAngle); 

VPX_GetHeadPositionAngle ( &hpa ); 



 
Arrington Research 

3/2/2016 
Page 234 

 GetPanelHit 21.2.2

int VPX_GetPanelHit ( VPX_EyeType eyn, int *panelNumber ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the ID number of the panel intersected by the EyeRay, for each eye, or 0 if no panel is hit. 
Given multiple panel planes, this returns the first (closest) panel that was hit, for each eye. In general, 
this is the panel at which the subject is looking. 
Note: The EyeRays from the two eyes can hit different panels (as with with stereo HMD display panels). 
Note: The panel intersected by the VersionRay is not currently calculated (Future). 
Returns 1. 

int panelNumber; 

VPX_GetPanelHit ( EYE_A, &panelNumber ); 

printf( “ Hit Panel Num: %d “, panelNumber ); 

 

See also the 3DWorkSpace / 3DViewPoint documentation for Panel Hit rules. 

 

 GetVergenceAngle 21.2.3

int VPX_GetVergenceAngle ( VPX_RealType *angleDeg ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the vergence angle in degrees. 
0.0 indicates there is no vergence angle. 
The vergence angle is only valid in binocular mode when there is an intersection between the eye rays. 
Returns 1. 

VPX_RealType angleDeg; 

VPX_GetVergenceAngle ( &angleDeg ); 

printf( “ Angle: %g “, angleDeg ); 

 



 
Arrington Research 

3/2/2016 
Page 235 

 GetGazePoint3D 21.2.4

int VPX_GetGazePoint3D ( VPX_RealPoint3D *gazePointCentimeters ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the verged gaze point, in centimeters, in the global coordinate system. 
(-1.0, -1.0, -1.0) indicates there is no verged gaze point. 
The verged gaze point is only valid in binocular mode when there is an intersection between the eye 
rays. 
Returns 1. 

VPX_RealPoint3D gpCM; // in centimeters (CM) 

VPX_GetGazePoint3D ( &gpCM ); 

printf( “ X: %g , Y: %g, Z: %g “,gpCM.x, gpCM.y, gpCM.z ); 

 

 GetVersionAngle 21.2.1

int VPX_GetVersionAngle ( VPX_RealPoint *angleDegrees ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the azimuth (x) and elevation (y) component angles, in degrees, of the version ray projected 
onto the horizontal and sagital planes of the head, respectively, that is, the component angles between 
the nose-ray and the version-ray. 
Negative azimuth is left of the sagittal plane, negative elevation is below the horizontal plane. 
The version angles are only valid in binocular mode when there is an intersection between the eye rays. 
Returns 1. 

VPX_RealPoint angleDeg; 

VPX_GetVersionAngle ( &angleDeg ); 

printf( “ Azimuth: %g , Elevation: %g “, angleDeg.x, angleDeg.y ); 



 
Arrington Research 

3/2/2016 
Page 236 

 GetVersionComponentVelocity 21.2.2

int VPX_GetVersionComponentVelocity ( VPX_RealPoint *velDegPerSec ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the azimuth (x) and elevation (y) components of the version ray movement velocity in degrees 
per second. 
Positive is rightward and upward, negative is leftward and downward. 
The version component velocity is only valid in binocular mode when there is an intersection between 
the eye rays. 
Returns 1. 

VPX_RealPoint velDegPerSec; 

VPX_GetVersionComponentVelocity ( &velDegPerSec ); 

printf(“ AzimuthVel: %g , ElevationVel: %g “, velDegPerSec.x, velDegPerSec.y ); 

 

 GetVersionTotalVelocity 21.2.3

int VPX_GetVersionTotalVelocity ( double *velDegPerSec ); 

3DWorkSpace & 3DViewPoint products only. 
Retrieves the Total Velocity of movement of the version ray in degrees per second. That is, the first 
derivative of the 3D gaze ray. The value is always zero or positive (non-negative). 
The version total velocity is only valid in binocular mode when there is an intersection between the eye 
rays. 
Returns 1. 

double velDegPerSec; 

VPX_GetVersionTotalVelocity ( &velDegPerSec ); 

printf( “ Velocity: %g “, velDegPerSec ); 



 
Arrington Research 

3/2/2016 
Page 237 

 

21.3 Eye Events 

 GetFixationSeconds 21.3.1

int VPX_GetFixationSeconds ( double* seconds ); 

int VPX_GetFixationSeconds2 ( VPX_EyeType eyn, double* seconds ); 

Retrieves the number of seconds that the TotalVelocity has been below the VelocityCriterion and the 
gaze drift has been below the DriftCriterion.  

A zero (0.0) value indicates a saccade is occurring.  
This function replaces the less precise function: VPX_GetFixationDuration(DWORD); 
Returns 1. 
See also:  VPX_GetTotalVelocity,  VPX_GetDrift2 

double seconds, milliseconds, microseconds ; 

VPX_GetFixationSeconds2 ( EYE_A, &seconds ); 

milliseconds = 1000.0 * seconds ; 

microseconds = 1000.0 * milliseconds ; 

 

 GetDrift 21.3.2

int VPX_GetDrift2( VPX_EyeType eyn, double *drift ); 

3DViewPoint & 3DWorkSpace units:  Degrees. 
ViewPoint units:  Normalized GazeSpace coordinates 

Retrieves the total 2D drift vector in normalized screen units, normalized with respect to the 
horizontal dimension. 

3DWorkSpace & 3DViewPoint products set these values when then are running. 
Returns 1. 
See also:  VPX_GetTotalVelocity;  VPX_GetFixationSeconds2 

double drift ; 

VPX_GetDrift2 ( EYE_A, &drift ); 

printf( “ Drift: %g “, drift ); 

 

 



 
Arrington Research 

3/2/2016 
Page 238 

 GetBlinkEvent 21.3.3

VPX_EyeEventType VPX_GetBlinkEvent2( VPX_EyeType eyn ) 

Retrieves the Blink Event . 
Returns only one of the following events: VPX_EVENT_NoBlink, VPX_EVENT_Blink_Start, 
VPX_EVENT_Blink_Continue, or VPX_EVENT_Blink_Stop. 
See also:  VPX_EyeEventType 

VPX_EyeEventType be = VPX_GetBlinkEvent2( EYE_A ); 

switch ( be ) 

{ 

  case VPX_EVENT_NoBlink: break; 

  case VPX_EVENT_Blink_Start: break; 

  case VPX_EVENT_Blink_Continue: break; 

  case VPX_EVENT_Blink_Stop: break; 

} 

 

 GetEyeMovementEvent 21.3.4

VPX_EyeEventType VPX_GetEyeMovementEvent2( VPX_EyeType eyn ) 

Retrieves the Eye Movement Event, see example below: 

Note that this never returns:  

  VPX_EVENT_Fixation_Stop, VPX_EVENT_Saccade_Stop, VPX_EVENT_Drift_Stop. 

3DWorkSpace & 3DViewPoint products set these values when then are running. 
See also:  VPX_EyeEventType 

VPX_EyeEventType me = VPX_GetEyeMovementEvent2 ( EYE_A ); 

switch ( me ) 

{ 

  case VPX_EVENT_Fixation_Start: break; 

  case VPX_EVENT_Fixation_Continue: break; 

  case VPX_EVENT_Saccade_Start: break; 

  case VPX_EVENT_Saccade_Continue: break; 

  case VPX_EVENT_Drift_Start: break; 

  case VPX_EVENT_Drift_Continue: break; 

} 

 
  



 
Arrington Research 

3/2/2016 
Page 239 

21.4 ROI 

 GetROI_RealRect 21.4.1

int VPX_GetROI_RealRect ( int n, VPX_RealRect *rr ); 

Retrieves the normalized floating point coordinates for the specified Region of Interest (ROI). 
Parameter n is the ROI index from { MIN_ROI_INDEX to MAX_ROI_INDEX }. 
Returns -998 for an invalid ROI index, 1 otherwise. 

// For a known hwnd. 

VPX_RealRect rr; 

RECT cr; 

INT w, h, ix; 

GetClientRect( hwnd, &cr ); w = cr.right; h=cr.bottom; 

for ( ix = 0;  ix < MAX_ROI_BOXES;  ix++ )  

{ 

  VPX_GetROI_RealRect( ix, &rr );  

  printf("ROI %d = (%d,%d)(%d,%d)", 

  (int)(w*rr.left), (int)(h*rr.top), (int)(w*rr.right), (int)(h*rr.bottom) ); 

} 

 ROI _GetHitListLength 21.4.2

int VPX_ROI_GetHitListLength ( VPX_EyeType eyn ); 

Returns the count of ROI that the POG is simultaneously within for the specified eye. 
Since ROI can be overlapped or nested, more than one ROI can be active at the same time. This value is 
NOT cumulative over time. 
Returns 0 when the POG is not in any ROI, the count of active ROI otherwise. For example, it returns 3, 
then three ROI were simultaneously hit. Use VPX_ROI_GetHitListItem to find out which ROI were hit. 
*** Data comes from 3DViewPoint or 3DWorkSpace when using these products and data will be 
different. 
See sample code under: VPX_ROI_GetHitListItem 

int numberOfRegionsHit = VPX_ROI_GetHitListLength ( EYE_A ); 



 
Arrington Research 

3/2/2016 
Page 240 

 ROI_GetHitListItem 21.4.3

int VPX_ROI_GetHitListItem ( VPX_EyeType eyn, int NthHit ); 

 

NthHit is a positive integer between 0 and ( MAX_ROI_INDEX – 1 ) 

Returns the ROI index number of the NthHit ROI that the POG is in for the specified eye. 
Since ROI can be overlapped, more than one ROI can be active at the same time. 
The NthHit argument starts at 0. This function may be called repeatedly in a while-loop until 

ROI_NOT_HIT is returned, or it can be called from within a for-loop using the count from 
VPX_ROI_GetHitListLength. 

Active ROI are when the POG is inside the ROI box, not resting on the box lines. The test is for values 
inside the ROI box values, not resting on the box lines. 

Returns -9998 for an invalid NthHit list index, ROI_NOT_HIT if NthHit is greater than or equal to the 
hit count or the ROI index number {MIN_ROI_INDEX to MAX_ROI_INDEX} otherwise. 

*** Data comes from 3DViewPoint or 3DWorkSpace when using these products and data will be 
different. 
See also:  
VPX_ROI_GetHitListLength 

VPX_ROI_GetEventListItem 

int roiNumber, ix = 0; 

while( ROI_NOT_HIT != ( roiNumber = VPX_ROI_GetHitListItem( EYE_A, ix++ ) ) ) 

{ 

  // Do something 

} 

 

// or… 

 

// get the number of ROI simultaneously hit 

int count = VPX_ROI_GetHitListLength ( EYE_A );  

// if at least one ROI was hit, get them from the list of ROI that were hit 

if ( count >= 1 )  

{ 

 // indexes into the list just created to get the roiNumber just hit. 

 for( int ix = 0; ix < count; ix++ )  

 { 

  int roiNumber = VPX_ROI_GetHitListItem ( EYE_A, ix ); 

 } 

} 



 
Arrington Research 

3/2/2016 
Page 241 

 

 ROI_MakeHitListString 21.4.4

int VPX_ROI_MakeHitListString ( EyeType eyn ,  char *dataString,   

  int maxStringLength,  BOOL indicateOverflow,  char *noHitsString ); 

 

int VPX_ROI_MakeHitListString_EDR ( VPX_EyeDataRecord* pEyeDataRecord, char 

*dataString, int maxStringLength, BOOL indicateOverflow, char *noHitsString ); 

Makes a string that lists the ROI that were hit. The _EDR function allows users to specify the 
VPX_EyeDataRecord directly if using the dll buffering since the structure contains the ROI hit list. 
If ( indicateOverflow == true ) then a "+" at the end of the string will be used to indicates that there were 
additional ROI that could not fit in the given string. 
Makes a string with at most maxStringLength characters. Specifying a maxStringLength of 2 will 
effectively limit the reported ROI to the first. For double digit numbers, prints both digits if possible, 
otherwise prints nothing. Does not leave dangling comma separators. 
If there are no ROI hit, then the caller’s noHitsString is used. 
Returns 0 on an error, the length of the string otherwise. 
See also:  VPX_ROI_GetHitListLength 
Example String:  "2,45,88" 

char myString [80]= ""; 

VPX_ROI_MakeHitListString( EYE_A, myString, 80, true, "No ROI were hit" ); 



 
Arrington Research 

3/2/2016 
Page 242 

21.5 EyeSpace 

 GetPupilSize 21.5.1

int VPX_GetPupilSize ( VPX_RealPoint *dims ); // EYE_A 

int VPX_GetPupilSize2 ( VPX_EyeType eyn, VPX_RealPoint *dims ); 

Retrieves size of the fit to the pupil in Normalized EyeSpace units 
As of version 2.8.4.524, the major-axis and the minor-axis, ONLY when using the Ellipse pupil segmentation method, are both normalized 

by the width of the EyeCamera, so the scales of the axes are commensurable.   
Prior to this version, the x- and y-size values were normalized with respect to the EyeSpace dimensions that have a 4:3 aspect, so the x- and y-
values were incommensurate. To obtain the aspect ratio of the pupil, you had to rescale: ( aspect = ps.x / ( ps.y * 0.75 )  

Pupil Size calculations are relative to which pupil segmentation method is active. 
Ellipse - dims.x is the major-axis (larger value) and dims.y is the minor-axis (smaller value).  The major-
axis and the minor-axis are both normalized by the width of the EyeCamera window so the scales of the 
axes are commensurable. This is by far the best mode for pupil size estimation. 
Oval Fit - dims.x is the HORIZONTAL dimension and dims.y is the VERTICAL dimension of the rectangular 
bounding box of the unrotated Oval.  The HORIZONTAL and VERTICAL dimensions are normalized 
independently by the width and height of the EyeCamera window respectively, so the scales of the axes 
are incommensurable. Note that OvalFit is expected to be deprecated in future versions; it only remains 
only because current blink detection algorithm performs best in this mode. 
Centroid - dims.x and dims.y are 0, because no pupil size is obtained. Note that this method is 
susceptible errors from improper lighting and glints over the pupil. 
Returns 1. 

See also:  VPX_GetPupilDiameter,  VPX_GetPupilAspectRatio,  VPX_GetPupilOvalRect2 

double num, dem, aspectCalculated, aspectRetrieved, diff ; 

VPX_RealPoint dims ; 

VPX_GetPupilSize( &dims );  

 

// Ellipse pupil segmentation method (commensurable). 

num = dims.y; // minor-axis 

dem = dims.x; // major-axis 

 

// Oval Fit pupil segmentation method (incommensurable). 

dims.y *= 0.75; // Scale to make commensurable. 

num = std::min ( dims.x, dims.y ); // min 

dem = std::max ( dims.x, dims.y ); // max 

 

aspectCalculated = num / dem; 

 



 
Arrington Research 

3/2/2016 
Page 243 

 GetPupilAspect 21.5.2

int VPX_GetPupilAspectRatio( double *ar ); // EYE_A 

int VPX_GetPupilAspectRatio2( VPX_EyeType eyn, double *ar ); 

Retrieves the dimensionless value of pupil circularity. This ratio value is independent of the EyeCamera 
window shape. A perfectly circular pupil will produce a value of 1.0. The Pupil Size x- and y-values are 
swapped so that the numerator is always less than denominator guaranteeing an Aspect Ratio always in 
the range {0.0 to 1.0}. 
Returns 1. 
See also:   VPX_GetPupilDiameter, VPX_GetPupilSize, VPX_GetPupilOvalRect 

double pupilAspect; 

int result = VPX_GetPupilAspectRatio2(  EYE_A, &pupilAspect  ); 

// See more details in the example for VPX_GetPupilSize 

 

 GetPupilOvalRect 21.5.3

int VPX_GetPupilOvalRect ( VPX_RealRect *ovalRect ); // EYE_A 

int VPX_GetPupilOvalRect2 ( VPX_EyeType eyn, VPX_RealRect *ovalRect ); 

Retrieves the rectangle, in normalized units, with respect to the EyeCamera window width and height 
that specifies the OvalFit to the pupil.  
Separate rectangles are available for Eye_A or Eye_B if binocular mode is on. 
Note: Only valid for the Oval Fit pupil segmentation method, set to (0,0,0,0) for the Ellipse fitting 
requires more values to be specified, see: VPX_GetPupilAngle2 method. 
Returns 1. 

See also:  VPX_GetPupilDiameter,    VPX_GetPupilSize,  

           VPX_GetPupilAspectRatio, VPX_RealRect2WindowRECT 

// Remote painting of the pupil size and location for a known hWnd. 

HDC hDC = GetDC( hWnd ); 

RECT cr, pr_pixels ; 

VPX_RealRect pr_norm ; 

VPX_GetPupilOvalRect ( &pr_norm ); // Bounding rectangle 

GetClientRect ( hWnd, &cr );  

// left & top are zero. The right & bottom are width & height of the window. 

VPX_RealRect2WindowRECT ( pr_norm, cr, &pr_pixels );  

Rectangle ( hDC, pr_pixels.left, pr_pixels.top, pr_pixels.right, pr_pixels.bottom); 

ReleaseDC ( hWnd, hDC ); 

 



 
Arrington Research 

3/2/2016 
Page 244 

 GetPupilAngle 21.5.4

int VPX_GetPupilAngle2 ( VPX_EyeType eyn, double *pa ); 

Retrieves the angle or rotation, in degrees, of the rotated ellipse that is fit to the pupil. 
Ellipse method: 0-degrees is a vertical ellipse, major-axis from 12- to 6-o'clock; 90-degrees is horizontal, 
major-axis from 3- to 9-o'clock.   
OvalFit method: the angle is always either 0-degrees or 90-degrees since the pupil is never rotated.   
Centroid method: the angle is always 0, not a valid value. 
To draw the rotated ellipse, (a) get the center via VPX_GetPupilPoint, (b) get the major and minor axis 
lengths via VPX_GetPupilSize, (c) get the angle of rotation of the ellipse via VPX_GetPupilAngle2. 

3DWorkSpace & 3DViewPoint products set these values when they play back a 3D data file, but they are set by 
ViewPoint when it is sending data to the 3D products. 

Returns 1. 

See also:  VPX_GetPupilPoint, VPX_GetPupilSize 

double angle ; 

VPX_GetPupilAngle2 ( EYE_A, &angle ); 

printf( “ Angle: %g “, angle ); 

 

 GetPupilDiameter 21.5.5

int VPX_GetPupilDiameter2 ( VPX_EyeType eyn, double* pdmm ); 

Retrieves the pupil diameter, in millimeters.  
The Pupil Diameter is always the larger of the pupil size (x, y) dimensions regardless of the pupil 

segmentation method selected. The Pupil Scale factor converts normalized units to millimeters. The 
resulut will not be correct unless this calibration is performed correctly in advance. The Pupil Scale factor 
is set for each eye in the Geometry window > PupilScale tab (see section 9.3). 

Returns 1. 
See also:  VPX_GetPupilSize, VPX_GetPupilAspectRatio, EyeA:pupilScaleFactor 

double diameter ; 

VPX_GetPupilDiameter2 ( EYE_A, &diameter ); 

printf( “ Diameter: %g mm ”, diameter ); 

 



 
Arrington Research 

3/2/2016 
Page 245 

 GetPupilPoint 21.5.6

int VPX_GetPupilPoint ( VPX_RealPoint *pp ); // EYE_A 

int VPX_GetPupilPoint2 ( VPX_EyeType eyn, VPX_RealPoint *pp ); 

Retrieves the raw normalized (x,y) location of the center of the pupil (center of the oval / ellipse fit 
to the pupil) in the EyeSpace.  

Note that this may not be equal to the value obtained via VPX_GetPupilCentroid2. 
3DWorkSpace & 3DViewPoint products set these values when they play back a 3D data file, but they 

are set by ViewPoint when it is sending data to the 3D products. 
Returns 1. 

VPX_RealPoint pp; 

VPX_GetPupilPoint2 ( EYE_A, &pp ); 

printf( “ X: %g , Y: %g “, pp.x, pp.y ); 

 

 

 GetPupilCentroid 21.5.1

VPX_GetPupilCentroid2 ( VPX_EyeType eyn, VPX_RealPoint *pc ); 

Retrieves the raw normalized centroid of the pupil threshold scan in the EyeSpace window, 
regardless of what subsequent processing options are selected (c.f. VPX_GetPupilPoint2.)  

Note that this may not be equal to the value from VPX_GetPupilPoint that is the center of the fit 
ellipse. 

Returns 1. 

VPX_RealPoint pc; 

VPX_GetPupilCentroid2 ( EYE_A, &pc ); 

printf( “ X: %g , Y: %g “, pc.x, pc.y ); 

 



 
Arrington Research 

3/2/2016 
Page 246 

 GetDiffVector 21.5.2

int VPX_GetDiffVector ( VPX_RealPoint *dv ); // EYE_A 

int VPX_GetDiffVector2 ( VPX_EyeType eyn, VPX_RealPoint *dv ); 

Retrieves the raw normalized vector difference between the centers of the pupil and the glint in the 
EyeSpace.  

Note: 0.5 is added to the values so that they are relative to the normalized center; the value is 
calculated as:  
vector.x = ( pupilCenter.x - glintCenter.x ) + 0.5 ; 

vector.y = ( pupilCenter.y - glintCenter.y ) + 0.5 ; 

Returns 1. 

VPX_RealPoint dv; 

VPX_GetDiffVector2 ( EYE_A, &dv ); 

printf( “ X: %g , Y: %g “, dv.x, dv.y ); 

 

 GetGlintPoint 21.5.1

int VPX_GetGlintPoint ( VPX_RealPoint *gp ); // EYE_A 

int VPX_GetGlintPoint2 ( VPX_EyeType eyn, VPX_RealPoint *gp ); 

Retrieves the raw normalized (x,y) location of the center of the glint (center of the OvalFit to the 
glint) in the EyeSpace. 

Returns 1. 
c.f. VPX_GetGlintCentroid2 

VPX_RealPoint gp; 

VPX_GetGlintPoint2 ( EYE_A, &gp ); 

printf( “ X: %g , Y: %g “, gp.x, gp.y ); 

 



 
Arrington Research 

3/2/2016 
Page 247 

 GetGlintCentroid 21.5.2

Int VPX_GetGlintCentroid2 ( VPX_EyeType eyn, VPX_RealPoint *gc ); 

Retrieves the raw normalized centroid of the glint threshold scan in the EyeSpace window, 
regardless of what subsequent processing options are selected (c.f. VPX_GetGlintPoint2). 

Returns 1. 

VPX_RealPoint gc; 

VPX_GetGlintCentroid2 ( EYE_A, &gc ); 

printf( “ X: %g , Y: %g “, gc.x, gc.y ); 

 GetTorsion 21.5.3

int VPX_GetTorsion ( double *degrees ); // EYE_A 

int VPX_GetTorsion2 ( VPX_EyeType eyn, double *degrees ); 

Retrieves torsion in +/- degrees. 
The torsion measurement must be turned ON; it is off by default to save processing time. 
3DWorkSpace & 3DViewPoint products set these values when they play back a 3D data file, but they are 
set by ViewPoint when it is sending data to the 3D products. 
Returns 1. 

Double degrees; 

VPX_GetTorsion2 ( EYE_A, &degrees ); 

printf( “ Torsion: %g “, degrees ); 

 



 
Arrington Research 

3/2/2016 
Page 248 

 Data Quality 21.5.4

int VPX_GetDataQuality ( VPX_DataQuality *quality ); // EYE_A 

int VPX_GetDataQuality2 ( VPX_EyeType eyn, VPX_DataQuality *quality ); 

Retrieves a code indicating what, if any, errors occurred during image processing and during testing 
against various data criteria levels. 

Compare result against defined constants : 
VPX_QUALITY_PupilScanFailed 

VPX_QUALITY_PupilFitFailed 

VPX_QUALITY_PupilCriteriaFailed 

VPX_QUALITY_PupilFallBack 

VPX_QUALITY_PupilOnlyIsGood 

VPX_QUALITY_GlintIsGood 

3DWorkSpace & 3DViewPoint products set these values when they play back a 3D data file, but they 
are set by ViewPoint when it is sending data to the 3D products. 

Returns 1. 

VPX_DataQuality theQualityCode; 

VPX_GetDataQuality2 ( EYE_A, & theQualityCode); 

if ( theQualityCode == VPX_QUALITY_GlintIsGood ) 

{ // Glint and Pupil are good 

} 

else if (theQualityCode <= VPX_QUALITY_PupilFallBack ) 

{ // Pupil only is good 

} 

 



 
Arrington Research 

3/2/2016 
Page 249 

21.6 Time Stamps 

 GetDataTime 21.6.1

int VPX_GetDataTime ( double *tm ); // EYE_A 

int VPX_GetDataTime2 ( VPX_EyeType eyn, double *tm ); 

Retrieves the high precision time, in seconds, when the video frame became available for the 
current DataPoint, before video image processing and other calculations were done. 

This was modified in version 2.8.2.36, Previously this obtained the time that the data was stored to 
the DLL and a VPX_DAT_FRESH event was issued. Now this function obtains the video synch time that 
better reflects the actual time that the image of the eye became available, and is not affected by 
variance in image processing time. The data storage time can now be obtained via VPX_GetStoreTime2. 

Note: this modification affects VPX_GetDataDeltaTime2 such that its variance should be 
significantly reduced. 

Version 2.9.3.120 introduces SINCE_SYSTEM_INIT_TIME, but is is currently used here. 
Returns 1. 
See also: VPX_GetStoreTime2 

double tm; 

VPX_GetDataTime2 ( EYE_A, &tm ); 

printf( “ Time: %g “, tm ); 

 

 GetDataDeltaTime 21.6.2

int VPX_GetDataDeltaTime ( double *tm ); // EYE_A 

int VPX_GetDataDeltaTime2 ( VPX_EyeType eyn, double *tm ); 

Retrieves the high precision time interval, in seconds, between the last two VPX_GetDataTime2 
values. 

Note: The delta time is affected by a change in VPX_GetDataTime2 such that the variance of the 
delta times should be much less (since version 2.8.2.36). 

Returns 1. 

double tm; 

VPX_GetDataDeltaTime2 ( EYE_A, &tm ); 

printf( “ Time: %g “, tm ); 

 



 
Arrington Research 

3/2/2016 
Page 250 

 GetStoreTime 21.6.3

int VPX_GetStoreTime2 ( VPX_EyeType eyn, double *tm ); 

Retrieves the high precision timestamp in seconds of the last time the data was stored to the DLL 
and a VPX_DAT_FRESH event was issued. 

Use VPX_GetDataTime for eye movement times; use this to find out when the data was available in 
the DLL, e.g., to calculate the delay in inter-application notification event handling. 

Version 2.9.3.120 introduces SINCE_SYSTEM_INIT_TIME, but is is currently used here. 
Returns 1. 

double tm; 

VPX_ GetStoreTime2 ( EYE_A, &tm ); 

printf( “ Time: %g “, tm ); 

 

 GetStoreDeltaTime 21.6.4

int VPX_GetStoreDeltaTime2 ( VPX_EyeType eyn, double *tm ); 

Retrieves the high precision time interval, in seconds, between the last two VPX_GetStoreTime2 
values. 

Returns 1. 

double tm; 

VPX_GetStoreDeltaTime2 ( EYE_A, &tm ); 

printf( “ Time: %g “, tm ); 

 



 
Arrington Research 

3/2/2016 
Page 251 

 Precision Timing 21.6.5

double VPX_GetViewPointSeconds 

double VPX_GetPrecisionDeltaTime( double *pdInHoldSeconds, int iFlags );  

Returns the time in SECONDS since *pdInHoldSeconds, or if NULL, since initialization. 
Returns PDT_UNAVAILABLE if the HighPerformanceCounter is NOT available. 
Returns PDT_INITIALIZING the first time, indicating initialization of the DLL init time variable. 
In general, it is best to let the ViewPoint application start the DLL. 
 

This function will automatically update the *pdInHoldSeconds with the current time, for use with the 
next call, if iFlags is RESET_PRECISE_HOLD_TIME, otherwise it will leave it unchanged. The four 
combinations are shown below: 
 

28-Feb-2003  
CHANGED behavior with NULL so that it returns the time since the fisrt call to 

VPX_GetPrecisionDeltaTime. 
 
Version 2.9.3.120 introduced the flag SINCE_SYSTEM_INIT_TIME and the second parameter was 

changed from BOOL bResetHoldTime to INT iFlags. All changes should be backwardly compatible and 
SINCE_DLL_INIT_TIME was added for clarity. Also, inHoldTime changed to pdInHoldSeconds, because 
it is now in seconds, which provides the user with a useful value; previously the value was in clockTicks 
that had not been converted to seconds. 

 
See 20.6 High Precision Timing section. 

#define VPX_GetViewPointSeconds \ 

   VPX_GetPrecisionDeltaTime( SINCE_PRECISE_INIT_TIME, SINCE_DLL_INIT_TIME ); 

 

static double someEventTime = 0.0; 

 

secondsSinceLastSomeEvent =  

   VPX_GetPrecisionDeltaTime( &someEventTime,    RESET_PRECISE_HOLD_TIME ); 

 

secondsSinceLaunchingTheApp = 

   VPX_GetPrecisionDeltaTime( &appLaunchTime,    LEAVE_PRECISE_HOLD_TIME ); 

 

secondsSinceStartingTheDLL = 

   VPX_GetPrecisionDeltaTime( SINCE_PRECISE_INIT_TIME, SINCE_DLL_INIT_TIME ); 

 

secondsSinceSystemWasBooted =  

   VPX_GetPrecisionDeltaTime( SINCE_PRECISE_INIT_TIME, SINCE_SYSTEM_INIT_TIME );  

 

 



 
Arrington Research 

3/2/2016 
Page 252 

21.7 Miscelaneous 

 GetCursorPosition 21.7.1

POINT VPX_GetCursorPosition ( void ) 

Returns the integer screen coordinates in pixels of the mouse cursor (pointer) on the machine that the 
DLL is running on. 
Consequently, the return value will be different on the ViewPoint machine and a remote machine. 
See also:  cursor_Control,  VPX_GetMeasuredScreenSize 

//Convert from pixel position to normalized screen position. 

POINT pixelCursorPosition = VPX_GetCursorPosition(); 

VPX_RealPoint screenSize, normalizeCursorPosition, np; 

VPX_GetMeasuredScreenSize ( &screenSize ); // MUST be set correctly by user. 

normalizeCursorPosition.x = (float) pixelCursorPosition.x / screenSize.x ; 

normalizeCursorPosition.y = (float) pixelCursorPosition.y / screenSize.y ; 

 

//Put remoteMachine cursorPosition into ViewPoint DataFile. 

np = normalizeCursorPosition ; 

VPX_SendCommand(“dataFile_insertString \”\t%g\t%g\” “, np.x, np.y ); 



 
Arrington Research 

3/2/2016 
Page 253 

 

 GetStatus 21.7.2

int VPX_GetStatus ( VPX_StatusItem statusRequest ) 

This provides a simple way to determine the current status or state of various ViewPoint operations.  
Note: The return value may need to be type cast for correct interpretation. 
See also:  VPX_StatusItem,  VPX_STATUS_CHANGE,  status_Dump 

int running = VPX_GetStatus( VPX_STATUS_ViewPointIsRunning ); 

// regardless of whether ViewPoint or ViewPointClient is the local distributor. 

int frozen = VPX_GetStatus( VPX_STATUS_VideoIsFrozen ); 

int open  = VPX_GetStatus( VPX_STATUS_DataFileIsOpen ); 

int paused = VPX_GetStatus( VPX_STATUS_DataFileIsPaused ); 

int thresh = VPX_GetStatus( VPX_STATUS_AutoThresholdInProgress ); 

// returns '0'=neitherEye thresholding, '1'=EyeA in process of thresholding, 

// '2'=EyeB in process of thresholding, '3'=both eyes thresholding 

int calib  = VPX_GetStatus( VPX_STATUS_CalibrationInProgress ); 

int binoc  = VPX_GetStatus( VPX_STATUS_BinocularModeActive); 

int scene  = VPX_GetStatus( VPX_STATUS_SceneVideoActive); 

char shape = (char)VPX_GetStatus( VPX_STATUS_StimulusImageShape );  

// returns 'I'=isotropic stretch, 'C'=centered, 'F'=fit to window, 'A'=actual 

int dllDataSource = VPX_GetStatus( VPX_STATUS_DistributorAttached ); 

// returns: 0=VPX_Distributor_None, 1=VPX_Distributor_IsViewPoint, or  

// 2=VPX_Distributor_IsRemoteLink, 3=VPX_Distributor_IsEtherClient 

 GetViewPointHomeFolder 21.7.3

char* VPX_GetViewPointHomeFolder ( char* pathString ); 

Concatenates the full path to the ViewPoint folder onto the end of the provided string.  
Must use 8-bit ASCII only. 
Note: this is not a copy operation, i.e., it does not clear any existing contents of the provided string. To 
effectively obtain a copy operation, make sure an empty string is provided. 

char pictureFile[512] = "" ;               // clear VERY IMPORTANT TO DO 

VPX_GetViewPointHomeFolder( pictureFile ); // adds: ...ViewPoint/" 

lstrcat( pictureFile, IMAGE_FOLDER );    // adds  "/Images/" 

lstrcat( pictureFile, “myPicture.bmp” );   // adds  "myPicture.bmp" 

 

 



 
Arrington Research 

3/2/2016 
Page 254 

 GetMeasuredViewingDistance 21.7.4

int VPX_GetMeasuredViewingDistance ( VPX_RealType *vd ); 

Provides the physical distance, in millimeters, of the subject's eye to the display screen, as specified 
by the user in the ViewPoint Geometry window, 2D tab dialog.  

Note: Not valid when used with 3DWorkSpace or 3DViewPoint. 
Returns 1. 

See also: 

VPX_GetHeadPositionAngle 

VPX_GetMeasuredScreenSize 

VPX_RealType vd; 

VPX_GetMeasuedViewingDistance( &vd ); 

printf(“Stimulus Display Viewing Distance is %g”, vd ); 

 GetMeasuredScreenSize 21.7.5

int VPX_GetMeasuredScreenSize ( VPX_RealPoint *sz ); 

Provides the physical size of the display screen, in millimeters, as calculated from the ViewPoint 
Geometry window, 2D tab dialog. 
Note: The units entered in by the user in the Geometry window can be any length unit, and thus, all 
calculations and functions that deal with these units will remain in the user-specified units. The user 
MUST enter the viewing distance and vertical and horizontal line lengths. 

Returns 1. 

See also: 

VPX_ GetMeasuredViewingDistance 

VPX_RealPoint sz ; 

VPX_GetMeasuredScreenSize( &sz ); 

printf(“Stimulus Display Screen Size is X: %g Y: %g”, sz.x, sz.y ); 

 
  



 
Arrington Research 

3/2/2016 
Page 255 

21.8 Calibration Information 

Get the VPX_CalibrationEventRecord immetiately after receiving any calibration event ( VPX_CAL_* ). 
Refer to section 21.14.2 for a description of the calibration events and their sequencing. 

 VPX_CalibrationEventRecord 21.8.1
typedef struct { 

 int  calEvent;   

   // VPX_CAL_WARN=5, VPX_CAL_BEGIN=6, VPX_CAL_SHOW=7, VPX_CAL_ZOOM=8,  

   // VPX_CAL_SNAP=9, VPX_CAL_HIDE=10, VPX_CAL_END=11 

 int index1;  // cv.EyeSpace.selection1  { 1 ... N }  

 VPX_RealPoint  stimPtA, stimPtB;   

   // calibration StimulusPoint location for EyeA and EyeB 

 int  slipMode;  // pv.doingSlipFix 

 int  snapMode;   

   // Timing : Snap OR Zoom : cv.calibration.snapMode  

   // VPX_CAL_SNAP only, otherwise VPX_CAL_(BEGIN/ZOOM/SNAP/END)  

   // from TIMER with ZOOM stimulu(s,i), calibratePoints1(a,a)?? 

 int singlePoint;   

   // Range  : calibratePoints1(a,a) OR  calibratePoints1(a,b) 

 int zoomSize; // N ... 0  ... N 

 int eyes;  // 1=EyeA, 2=EyeB, 3=Both 

} VPX_CalibrationEventRecord; 

 

 GetCalibrationEventRecord 21.8.2

int VPX_GetCalibrationEventRecord( VPX_CalibrationEventRecord *calEventRec ); 

Retrieves the calibration event record for the current calibration event. 
This function is designed to be used with the VPX_CAL_* members of the 
VP_Message_NotificationCodes.  The VPX_CalibrationEventRecord contains the calibration 
stimulus point locations for both EYE_A and EYE_B, thus allowing different point locations between the 
two eyes. 
Returns 0 on success, non-zero otherwise. 
See also: 
VPX_GetCalibrationStimulusPoint2 

VPX_CalibrationEventRecord 

VP_Message_NotificationCodes 

VPX_CalibrationEventRecord calEventRec; 

VPX_GetCalibrationEventRecord ( &calEventRec ); 

 



 
Arrington Research 

3/2/2016 
Page 256 

 GetCalibrationStimulusPoint 21.8.3

int VPX_GetCalibrationStimulusPoint( int ixPt, VPX_RealPoint *calPt ); // EYE_A 

int VPX_GetCalibrationStimulusPoint2( VPX_EyeType eyn, int ixPt, VPX_RealPoint *calPt 

); 

Retrieves the calibration Stimulus Point location for the ixPt point, in normalized units. 
Valid ixPt range is {1 to 72}. 
Returns 0 on success, non-zero otherwise. 
See also:  VPX_GetCalibrationEventRecord 
CLI:  calibration_CustomPoint  index  xLoc  yLoc 
CLI:  calibration_Snap 

VPX_RealPoint calPt; 

VPX_GetCalibrationStimulusPoint2 ( EYE_A, 1, &calPt ); 

printf(“CalPt X: %g Y: %g”, calPt.x, calPt.y ); 

MyCalibrationStimulusPointDraw(calPt); 

VPX_SendCommand(“calibration_Snap”); 

 
  



 
Arrington Research 

3/2/2016 
Page 257 

 

21.9 HWND Functions 

These are specific to Microsoft Windows machines and only work for layered applications that use 
the same DLL as ViewPoint is using, with the excetion of VPX_SetEyeImageWindow that work via 
ViewPointClient on some recent version. 

Note that the HWND functions may not be continued in future versions. 

 Set Remote EyeImage 21.9.1

int VPX_SetEyeImageWindow ( VPX_EyeType eyn, HWND hWnd ); 

Specifies the window within a layered application that should be used for display of the EyeCamera 
image. 
In some later versions this works on remote MSWindows machines with video buffering is enabled. 
Returns 1. 
See also:  VPX_EyeCameraImageOverlays; VPX_SetEyeImageDisplayRect 

HWND hWnd = myEyeWindow ; 

VPX_SetEyeImageWindow( EYE_A, hWnd ); 

 

 Set EyeImage Display Rectangle 21.9.2

int VPX_SetEyeImageDisplayRect ( VPX_EyeType eyn, RECT displayRect ); 

Allows optional re-adjustment of the display (EyeCamera) image offset and size, from the default. 
Note: 320x240 provides optimal performance; other sizes may increase CPU usage. 
Returns 1. 
See also:  VPX_SetEyeImageWindow 

RECT displayArea = { 10, 10, 130, 250 } ; 

VPX_SetEyeImageDisplayRect( EYE_A, displayArea ); 

 



 
Arrington Research 

3/2/2016 
Page 258 

 Set External Stimulus Window 21.9.3

int VPX_SetExternalStimulusWindow ( HWND hWnd ); 

This provides a mechanism for ViewPoint to draw the calibration stimuli directly into a window created 
by another application. The argument to this function is the handle of the created window. 
CAUTION: When finished, the programmer must make certain to call this function again with a NULL 
HWND argument (or the handle of yet another window), before destroying the created window. 
The calibration stimuli are still drawn in the ViewPoint Stimulus and GazeSpace windows, as usual. 
Returns 1. 
See sample code in: VPX_ MFC_Demo.cpp 
Contrast to: HWND VPX_GetViewPointStimulusWindow(); 

if (1){ // WIN32 

  HWND hWnd = myStimulusWindow ; 

  VPX_SetExternalStimulusWindow( hWnd ); 

} else { // MFC 

  CWnd* pWnd = GetDlgItem(IDC_StimulusPicture) ; 

  HWND hWnd = pWnd->GetSafeHwnd() ; 

  VPX_SetExternalStimulusWindow( hWnd ); 

} 

 

 



 
Arrington Research 

3/2/2016 
Page 259 

 GazeSpace / Stimulus Window 21.9.1

HWND VPX_GetViewPointStimulusWindow ( void ); 

HWND VPX_GetViewPointGazeSpaceWindow ( void ); 

Allows a layered program to access to ViewPoint's Stimulus window and GazeSpace window by way of 
the window handle. 
Note: this will work only if layered application uses the same DLL that ViewPoint is using (i.e., the local 
data distributor application is ViewPoint. This does NOT work from remote computers, eg. using 
Ethernet! 
See also: 
VPX_SetEyeImageWindow 

VPX_SetExternalStimulusWindow 

VPX_GetStatus( VPX_STATUS_DistributorAttached ); 

int dllSource = VPX_GetStatus( VPX_STATUS_DistributorAttached ); 

if ( VPX_Distributor_IsViewPoint == dllSource ) 

{ 

 for ( int ix=0; ix<2; ix++ ) 

 {  

 HWND hWnd ; 

 if ( ix == 0 ) hWnd = VPX_GetViewPointStimulusWindow(); 

 else hWnd = VPX_GetViewPointGazeSpaceWindow(); 

 if (!hWnd) continue ; 

 CWnd* w = FromHandle( hWnd ); 

 CDC* d = w->GetDC(); 

 RECT r ; 

 w->GetClientRect(&r); 

 d->Rectangle( r.left+10, r.top+10, r.right-10, r.bottom-10 ); 

 d->MoveTo( r.left, r.bottom ); d->LineTo( r.right, r.top ); 

 r.left = r.top = 25 ; 

 d->DrawText("Drawing from\nVPX_mfc_demo",&r,0); 

 ReleaseDC(d); 

 } 

} 



 
Arrington Research 

3/2/2016 
Page 260 

21.10 CallbackFunction Interface 

Layered applications can access data and state changes from ViewPoint in real-time by registering one or 
more callback functions. A single callback function is usually sufficient. Note that if the callback function 
list becomes long, there may be a measurable time difference between the first and last.  
The DLL creates a separate thread for each callback function. All callback functions are called upon an 
event and are processed in parallel according to the OS thread time slices. Once a function is called back, 
it will not be called again (interrupted) with a new event until the current function returns. You should 
return from a callback function as fast as possible preferably before the next event otherwise the 
Windows OS message queue may overrun.  If using the data fresh events, you can choose to use the 
thinned operation flag that usually runs at ~30Hz regardless of the actual frame rate. 
 

 Insert Callback function 21.10.1

int VPX_InsertCallback ( VPX_CALLBACK callbackFunction, void* userPtr ); 

Inserts the specified callbackFunction into the list of callback functions that are called back, for 
example, when fresh data has been put in the DLL shared memory.  
The userPtr is available to the user to specify any pointer that will later be returned (untouched) on the 
callback. Specifically it can be used to pass “this” within a Class, such that the callbackFunction that 
is outside the Class, can obtain a pointer to that Class. The way the callbackFunction can access the 
member functions of that class. 
Returns:  VPX_CallbackResult  
See also:  VPX_RemoveNonRespondingMessageTargets  

Change Notes: 
The userPtr parameter was added in version 2.9.FixMe; previous versions did not contain this. 

Int ret = VPX_InsertCallback( &myCallbackFunction, this ); 

 



 
Arrington Research 

3/2/2016 
Page 261 

 Remove Callback function 21.10.2

int VPX_RemoveCallback ( VPX_CALLBACK callBackFunction ); 

Removes your application’s request for notification for the specified callBackFunction that was 
created by VPX_InsertCallback. (not by the deprecated VPX_InsertMessageRequest) 
Returns:  VPX_CallbackResult 

int ret = VPX_RemoveCallback( &myCallbackFunctionName  ); 

 List Callback functions 21.10.3

int VPX_GetCallbackListLength ( void ); 

Returns the number of callback functions that are registered by VPX_InsertCallback to receive 
function callbacks in the current process.  (Note not by VPX_InsertMessageRequest) 
Returns:  the number of registed callback functions 
See also:  VPX_InsertCallback 

int nCallbacks = VPX_GetCallbackListLength(); 

 Get Layered App CallbackListLength 21.10.4

int VPX_GetLayeredAppCallbackListLength ( void ); 

Returns the number of layered applications that have registered 1 or more event notifications (includes 
both callback functions and HWNDs). 
See also: 
VPX_InsertCallback  

VPX_InsertMessageRequest 

int ret = VPX_GetLayeredAppCallbackListLength(); 

 



 
Arrington Research 

3/2/2016 
Page 262 

 VPX_CallbackResult 21.10.5

Check the return results to assure that the operation completed successfully. 
 

typedef enum { 

VPX_CALLBACK_HEAD, 

VPX_CALLBACK_INSERTED, 

VPX_CALLBACK_INSERT_DUPLICATE, 

VPX_CALLBACK_LIST_LENGTH_EXCEEDED, 

VPX_CALLBACK_INSERT_ERROR, 

VPX_CALLBACK_REMOVED, 

VPX_CALLBACK_NOT_FOUND, 

VPX_CALLBACK_LIST_IS_EMPTY, 

VPX_CALLBACK_REMOVE_ERROR, 

VPX_CALLBACK_TAIL 

} VPX_CallbackResult; 

 
 

  



 
Arrington Research 

3/2/2016 
Page 263 

21.11 MessageRequest Interface (Deprecated) 

DEPRECATED – Use the CallBackFunction Interface instead. 
Layered applications can access data and state changes from ViewPoint in real-time by registering 

one or more message requests. Normally a single message request is sufficient. The messaging scheme 
was the original real-time interface developed in ViewPoint in the early 1990s. The platform independed 
Callback function interface is generally preferred now and future versions may not support the 
messageRequest scheme. 

 Insert MessageRequest 21.11.1

int VPX_InsertMessageRequest ( HWND hWnd, UINT msg ) 

Inserts the specified hWnd into the list of windows that are sent notification messages. E.g. when 
fresh data has been put in the DLL shared memory. Refer to 0Note that this cause messages to be sent, 
not callbackFunction calls. 

 

See also: 

VPX_ InsertCallback 

VPX_ RemoveMessageRequest 

VPX_ RemoveNonRespondingMessageTargets 

int ret = VPX_RemoveNonRespondingMessageTargets( ); 

  

 Remove MessageRequest 21.11.2

int VPX_RemoveMessageRequest( HWND hWnd ); 

Removes your application’s request for notification for the specified window.  Note that these 
entries were created by VPX_InsertMessageRequest, not by VPX_InsertCallback. 

 
Returns ? 

 

See also: 

VPX_ InsertMessageRequest 

VPX_RemoveCallback 

int ret = VPX_RemoveNonRespondingMessageTargets( ); 

 



 
Arrington Research 

3/2/2016 
Page 264 

 Remove non-responding MessageRequests 21.11.3

int VPX_RemoveNonRespondingMessageTargets (void) 

Removes all the non-responding message requests from message list. Note that these entries were 
created by VPX_InsertMessageRequest, not by VPX_InsertCallback. 

 
Returns the number of non-responding message requests that were removed. 
 

See also: 

VPX_InsertCallback 

int ret = VPX_RemoveNonRespondingMessageTargets( ); 

 

 Get Message List Length 21.11.4

int VPX_GetMessageListLength ( int *num )  

Returns the number of windows that are registered to receive messages in the current process.  
Note that these entries were created by VPX_InsertMessageRequest, not by VPX_InsertCallback. 

 

See also: 

VPX_InsertCallback 

int ret = VPX_GetMessageListLength(  &theMessageListLength  ); 

 

 Get Message Post Count 21.11.5

int VPX_GetMessagePostCount ( int *num ) 

Returns the total number of messages that have been distributed for all processes.   

???? Note that these entries were created by VPX_InsertMessageRequest, not by 
VPX_InsertCallback. ???? 

 

See also: 

VPX_InsertMessageRequest 

int ret = VPX_GetMessagePostCount(  &theNumberOfPosts  ); 

 



 
Arrington Research 

3/2/2016 
Page 265 

 GetViewPointAppCount 21.11.6

int VPX_GetViewPointAppCount (int *apps) 

DEPRECATED 

Sets applications to non-zero if ViewPoint is running. 

 

See also: 

int running = VPX_GetStatus( VPX_STATUS_ViewPointIsRunning ); 

int ret = VPX_GetViewPointAppCount( &vpApps ); 

 

 
 
 
 

21.12 Version Checking and Matching for SDK / DLL 

When dynamically linked libraries are created two files are created, one is a .lib file and the other 
is a .dll file on Windows machines (.dylib, or .so, on other types of machines). Programs are compiled 
with the .lib file, then when the program is run it dynamically links in the .dll file. 

When layered applications communicate with ViewPoint on the same machine directly through a 
DLL, the version numbers must match for all layers: 

 vpx.h    header file for .lib, .dll, and all .exe files. 

 VPX_InterApp.lib  that was compiled into both ViewPoint and the LayeredApp. 

 ViewPoint.exe  the ViewPoint application. 

 VPX_InterApp.dll  linked at runtime into both ViewPoint and the layered app. 
 

When layered applications communicate with ViewPoint through a ViewPoint Client, the following 
version numbers must all match: 

 vpx.h    header file for .lib, .dll, and all .exe files. 

 VPX_InterApp.lib  compiled into ViewPoint, ViewPointClient & LayeredApp. 

 ViewPoint.exe  the ViewPoint application. 

 VPX_InterApp.dll  linked at runtime into ViewPoint. 
--- 

 ViewPointClient.exe  client that communicates with the server in ViewPoint. 

 LayeredApp.exe  the user application 

 VPX_InterApp.dll  linked at runtime into ViewPointClient and the LayeredApp. 



 
Arrington Research 

3/2/2016 
Page 266 

 VPX_GetDLLVersion 21.12.1

double VPX_GetDLLVersion ( void ); 

Returns the version number of the loaded DLL. 

The format of the returned number is: ABC.xyz, where the ViewPoint application would show the 
version as: A.B.C.xyz ???? WHAT about 2.10.12.10 vs 2.10.12.1 

See also: 

VPX_VersionMismatch 

VPX_GetRevisionNumber 

double dllVersion = VPX_GetDLLVersion(); 

if ( VPX_SDK_VERSION != dllVersion ) doSomething(); 

if ( dllVersion is < 291.0 ) then doSomeOtherThing();  // version 2.9.1.000 

 VPX_VersionMismatch 21.12.2

BOOL VPX_VersionMismatch ( VPX_SDK_VERSION ); 

Returns 0 if the program was compiled with the same version of the DLL lib as the DLL that is loaded 
at run time. 

Version 2.9.3.115 and aftter only check the first three values of the version quad, the last value is for 
small patches that do not effect interapplication communication. 

See also: 

VPX_GetDLLVersion 

If ( VPX_VersionMismatch( VPX_SDK_VERSION ) ) return; 

 VPX_GetRevisionNumber 21.12.3

double VPX_GetRevisionNumber( void );  // DEPRECATED 

Returns small revisions to DLL, mostly used for DLL development. 

See also: 

VPX_GetDLLVersion 

VPX_VersionMismatch 

int ret = VPX_GetRevisionNumber(); 

 

  



 
Arrington Research 

3/2/2016 
Page 267 

21.13 SDK Utility Functions 

 

 DebugSDK 21.13.1

int VPX_DebugSDK( BOOL flag ); 

If TRUE the SDK interface will provide more information that can help with debugging.  

VPX_DebugSDK(1); 

 Draw Rectangle 21.13.2

VPX_RectFrame ( HDC hdc, int x1, int y1, int x2, int y2, int t ); 

Draws two concentric hollow rectangles in the specified window. The inner rectangle is defined by 
the specified coordinates. The outer rectangle is larger by parameter t pixels. 

VPX_RectFrame ( hDC, r.left, r.top, r.right, r.bottom, nBigger ); 

 Draw Ellipse 21.13.3

VPX_EllipseFrame ( HDC hdc, int x1, int y1, int x2, int y2, int t ); 

Draws two concentric hollow ellipses in the specified window. The inner rectangle is defined by the 
specified coordinates. The outer rectangle is larger by parameter t pixels. 

VPX_ EllipseFrame ( hDC, r.left, r.top, r.right, r.bottom, nBigger ); 

 Draw ROI 21.13.1

VPX_drawROI ( HWND hWnd, int activeRegion ); 

Draws the activeRegion ROI in red and all of the other ROI in blue, within the specified window. 

VPX_drawROI (hWnd, activeRegion ); 

 
 



 
Arrington Research 

3/2/2016 
Page 268 

 Convert: pixelRect  normalizedRect 21.13.2

VPX_WindowRECT2RealRect ( RECT nr, RECT clientRect, RealRect * rr ); 

Takes in integer coordinates for a rectangle within a specified window and returns the normalized 
coordinates for that rectangle. This is useful for obtaining a normalizedRect from a windowsRect that is 
in a particular clientRect 

RECT pixelRect = { 50, 50, 99, 99 }; 

VPX_RealRect normalizedRect; 

VPX_WindowRECT2RealRect ( pixelRect, clientRect, & normalizedRect ); 

 Convert: normalizedRect pixelRect 21.13.3

VPX_RealRect2WindowRECT ( RealRect rr, RECT clientRect, RECT *scaledRect ); 

Takes normalized coordinates of a rectangle and returns integer (pixel) coordinates that have been 
scaled for the size of the specified window. 

RealRect rr = { 0.1, 0.1, 0.2, 0,2 };  

RECT clientWindowRect = { 320, 240 };  

RECT scaledRect ;  

VPX_RealRect2WindowRECT( rr, clientWindowRect, &scaledRect );  

// The scaledRect will now contain { 32, 24, 64, 48 } 

 Convert: LParam  RealPoint 21.13.4

int VPX_LParam2RealPoint ( LPARAM codedLoc, VPX_RealPoint *pt ); 

Legacy MessageRequest interface. 

 



 
Arrington Research 

3/2/2016 
Page 269 

 Convert: LParam  RectPoint 21.13.5

int VPX_LParam2RectPoint ( LPARAM codedLoc, RECT clientRect, POINT *pt ); 

Legacy MessageRequest interface. 
Used with VPX_CAL_* messages to obtain the location of the calibration point that is encoded in the 
message LPARAM. Takes LPARAM and returns integer coordinates of the calibration points that have 
been scaled for the size of the specified window. Previously defined in DLL but not listed in prototypes, 
because it was under evaluation. Added here in version 2.4.2.0 
See also: VPX_GetCalibrationStimulusPoint 

 

 
 



 
Arrington Research 

3/2/2016 
Page 270 

 
 

21.14 Events and Notification Messages 

ViewPoint is constantly sending messages to layered applications notifying them of that there is 
fresh data available, that a DataFile has been opened/paused/resumed/closed, etc. These messages can 
be obtained in realtime via a callbackFunction that is activated by VPX_InsertCallback (or by the 
deprecated Windows messaging scheme that is activated by using VPX_InsertMessageRequest) 

 General Events 21.14.1

 

msg 

HIWORD( WPARAM ) 

VPX_DAT_FRESH 

The data has just been updated; real-time programs should now access the 
data that it needs by calling the accessor functions.  

subMsg 

LOWORD( WPARAM ) 
The eye the command pertains to: EYE_A, EYE_B  
 

param1 

HIWORD( LPARAM ) 

Not used. 

param2 

LOWORD( LPARAM ) 

Not used. 

VPX_EyeType eyn = (VPX_EyeType)subMsg; 

VPX_EyeType eyn = (VPX_EyeType)LOWORD(wparam); 

VPX_RealRect gpt; 

VPX_GetGazePoint2( eyn, &gpt ); 

 



 
Arrington Research 

3/2/2016 
Page 271 

msg 

HIWORD( WPARAM ) 

VPX_ROI_CHANGE 

Indicates that a Region Of Interest (ROI) was changed. 

subMsg 

LOWORD( WPARAM ) 

RealRect rr ;  

RECT cr, dr ;  

GetClientRect( hwnd, &cr );  

WORD roiIndexNumber = LOWORD( wParam );  

VPX_GetROI_RealRect(roiIndexNumber, &rr );  

VPX_RealRect2WindowRECT( rr, cr, &dr );  

Rectangle( hdc, dr.left, dr.top, dr.right, dr.bottom ); 

LPARAM  Do not use LPARAM. 

 

msg 

HIWORD( WPARAM ) 

VPX_STATUS_CHANGE 

Indicates that a key ViewPoint status item was changed. 
For details, see section 21.7.2: GetStatus.  
VPX_GetStatus 

subMsg 

LOWORD( WPARAM ) 

Not used. 

param1 

HIWORD( LPARAM ) 

WORD statusValue = param1;  

WORD statusValue = HIWORD( lParam );  

param2 

LOWORD( LPARAM ) 

WORD statusItem = param2;  

WORD statusItem = HIWORD( lParam ); 

WORD statusItem  = param1;  

WORD statusValue = param2;  

switch ( statusItem ) { 

  case VPX_STATUS_DataFileIsOpen :  

   printf(“DataFile is %s”, (statusValue==1)?”Open”:”Closed” ); 

   break; 

… 

 



 
Arrington Research 

3/2/2016 
Page 272 

msg 

HIWORD( WPARAM ) 

VPX_VIDEO_FrameAvailable  

Notifies external (layered) applications that a video frame is available in 
ViewPoint memory. 
See also: 

subMsg 

LOWORD( WPARAM ) 

VPX_EyeType eye = LOWORD(wparam);  

// Usage: if ( eye == EYE_A ) 

LPARAM  DWORD notUsed = lparam ;  // NOTE: subject to change! 

 

msg 

HIWORD( WPARAM ) 

VPX_VIDEO_SyncSignal 

This message is sent as soon as the video capture board detects frame-ready 
(30 Hz) or field-ready (60 Hz) signal. The user can now tell when the image 
became available for processing, before any image processing has been 
performed. This better reflects the true time of the eye movement, and 
reduces noise in the timing calculation. 

See also: 
vpx_event +videoSynch 

VPX_GetDataTime2 

subMsg 

LOWORD( WPARAM ) 

VPX_EyeType eye = LOWORD(wparam);  

if ( eye == EYE_A ) { /* do it */ } 

LPARAM  DWORD deltaMicroSeconds = lparam;  

// NOTE: subject to change! 

 
  



 
Arrington Research 

3/2/2016 
Page 273 

 Calibration Events 21.14.2

The flow of the calibration events in the autocalibration sequence is as follows: 
 

VPX_CAL_BEGIN 

VPX_CAL_WARN  

 // each calibration point 

 VPX_CAL_SHOW   

  VPX_CAL_ZOOM  // for radius 15 down to 0 

   VPX_CAL_SNAP 

  VPX_CAL_ZOOM  // for radius 0 up to 15 

 VPX_CAL_HIDE 

VPX_CAL_END 

 
Call VPX_GetCallibrationEventRecord (see section 21.8.1) immediately after receiving any calibration 

event. 
 

msg 

 

HIWORD( WPARAM ) 

VPX_CAL_BEGIN 

Indicates that a calibration sequence is about to start. 
This is the first calibration message in the sequence. In general you would 
want to blank the stimulus display screen and disable other graphics 
drawing. 

subMsg 

LOWORD( WPARAM ) 

The calibration point number, the actual point index number, not the 
random or custom sequence number. 

LPARAM  The location of the upcoming StimulusPoint.  
As below, use: VPX_LParam2RectPoint( lParam, cr, &calPt ); 

 



 
Arrington Research 

3/2/2016 
Page 274 

msg 

HIWORD( WPARAM ) 

VPX_CAL_WARN 

Provides an opportunity to display a warning message to the subject, to 
make sure that they are paying attention. 

Follows VPX_CAL_BEGIN.  
The warmomg time, i.e., the delay between this event and the next 

event, can be specified in ViewPoint, EyeSpace window, Advanced button, 
WarningTime slider. 

subMsg 

LOWORD( WPARAM ) 

The calibration point number, the actual point index number, not the 
random or custom sequence number. 

LPARAM  Contains the location of the upcoming StimulusPoint.  
 

POINT calPt; char* str = " PAY ATTENTION " ;  

RECT cr ;  

GetClientRect( hwnd, &cr );  

VPX_LParam2RectPoint( lParam, cr, &calPt );  

TextOut( hdc, calPt.x-80,calPt.y, str, strlen(str) ); 

 

msg 

HIWORD( WPARAM ) 

VPX_CAL_SHOW 

Indicates that the calibration StimulusPoint should be drawn. 
Follows VPX_CAL_WARN for the first StimulusPoint; loops back to here 

after VPX_CAL_HIDE for each additional StimulusPoint. 

subMsg 

LOWORD( WPARAM ) 

The calibration point number, the actual point number, not the random 
or custom sequence number. 

LPARAM  Contains the location of the StimulusPoint.  

As above, use: VPX_LParam2RectPoint( lParam, cr, &calPt ); 

 



 
Arrington Research 

3/2/2016 
Page 275 

msg 

HIWORD( WPARAM ) 

VPX_CAL_ZOOM 

Indicates a radius change of the tunnel motion of the stimulus. 
Follows VPX_CAL_SHOW and is repeatedly sent until the radius shrinks to zero. 

subMsg 

LOWORD( WPARAM ) 

The stimulus radius ( shrinks from 15 to 2 ). 
WORD zoomSize = subMsg;  

WORD zoomSize = LOWORD( wParam ); 

LPARAM  Contains the location of the StimulusPoint.  
POINT pt ;  

RECT cr ; GetClientRect( hwnd, &cr ); VPX_LParam2RectPoint( 

lParam, cr, &pt );  

r = cr.right * zoomSize / 200 ; // radius 

Rectangle ( hdc, pt.x - r, pt.y - r, pt.x + r, pt.y + r ); 

POINT pt ;  

int zoomSize = subMsg; // what do param1 & param2 contain? 

RECT cr ; GetClientRect( hwnd, &cr );  

VPX_CalibrationEventRecord calEventRec; 

VPX_GetCalibrationEventRecord ( &calEventRec ); 

pt.x = calEventRec.stimPtA.x * cr.right; 

pt.y = calEventRec.stimPtA.y * cr.bottom; 

int r = cr.right * zoomSize / 200 ; // radius 

Rectangle ( hdc, pt.x - r, pt.y - r, pt.x + r, pt.y + r ); 

 



 
Arrington Research 

3/2/2016 
Page 276 

msg 

HIWORD( WPARAM ) 

VPX_CAL_SNAP 

Indicates that the calibration image of the eye is being taken.  
Follows the series of VPX_CAL_ZOOM events, after zoomSize has shrunk to 
zero; or if the calibration mode is in snapMode, this is called itself. 

subMsg 

LOWORD( WPARAM ) 

The calibration point number, the actual point index number, not the 
random or custom sequence number, is in the lower 8 bits, flags for 
slipCorrection mode and snapMode are in the upper 8 bits. 
subMsg  ??? 

 

WORD loWordw = LOWORD(wParam); 

BOOL slipMode = ( loWordw & 128 ) ? 1 : 0 ;  // bit 8 

BOOL snapMode = ( loWordw & 256 ) ? 1 : 0 ;  // bit 9 

int pointNumber = LOWORD(wParam) & 127 ; // low bits 0..7 

LPARAM  Contains the location of the StimulusPoint.  
As above, use: VPX_LParam2RectPoint( lParam, cr, &calPt ); 

 

msg 

HIWORD( WPARAM ) 

VPX_CAL_HIDE 

Indicates completion of the current calibration point. The program should 
clean up any remnants of this last calibration StimulusPoint display. 

subMsg 

LOWORD( WPARAM ) 

The calibration point number, the actual point index number, not the 
random or custom sequence number. 
int pointNumber = LOWORD( wparam ) 

LPARAM  Contains the location of the StimulusPoint.  
As above, use: VPX_LParam2RectPoint( lParam, cr, &calPt ); 

 

 



 
Arrington Research 

3/2/2016 
Page 277 

msg 

HIWORD( WPARAM ) 

VPX_CAL_END  

Indicates that the entire calibration sequence has finished. The LOWORD 
indicates whether or not a slipFix was requested. A 1 indicates slipFix, zero 
indicates (re)calibration of a point.  

subMsg 

LOWORD( WPARAM ) 

Indicates whether or not a slipFix was requested (rather than e.g. a 
recalibration) . A 1 indicates slipFix, zero indicates recalibration of a point.  
Note: this is not currently consistent with the wparam format used in 
VPX_CAL_SNAP, but it may be made consistent in the future. 
BOOL doSlipFix = LOWORD(wParam) == 1 ; 

LPARAM  Contains the location of the StimulusPoint.  
As above, use: VPX_LParam2RectPoint( lParam, cr, &calPt ); 



 
Arrington Research 

3/2/2016 
Page 278 

21.15 Structures and Enumerations 

 VPX_PositionAngle 21.15.1

 
typedef struct { 

VPX_RealType  x ;  // horizontal-axis 
VPX_RealType  y ;  // vertical-axis 
VPX_RealType  z ;  // depth-axis 
VPX_RealType  roll ;  // about the z-axis (depth-axis) 
VPX_RealType  pitch ; // about the x-axis (horizontal-axis) 
VPX_RealType  yaw ;  // about the y-axis (vertical-axis) 
} VPX_PositionAngle ; 
 

 VPX_GetImageRecord 21.15.2

 

typedef struct { 
int sourceBuffer; // Specifies the source buffer to get the image from.  (EYE_A, EYE_B, SCENE_A, SCENE_B) 

int destWidthStep; // Size of aligned (padded) image row in bytes.  If no padding then destWidthStep = (width * bytesPerChannel * 
colorChannels). 
int destWidth; // Image width in pixels. 
int destHeight; // Image height in pixels 
VPX_IntRect destRect; // Currently not used. 
VPX_GetImageBitsPerChannel destBitsPerChannel; // Number of bits per channel. 
VPX_GetImageColorChannels destColorChannels; // Number of color channels. 
int flipAroundHorizontalAxis; // Flips the image about the horizontal axis (Flip Image Vertically). (nonzero - flip, 0 - no flip). 
int flipAroundVerticalAxis; // Flips the image about the vertical axis (Flip Image Horizontally). (nonzero - flip, 0 - no flip). 

int swapRedAndBlue; // Swaps the Red and Blue color values (converts BGR2RGB, RGB2BGR, BGRA2RGBA, RGBA2BGRA). (nonzero - 
swap, 0 - no swap). 
int setAlphaValue; // Sets all Alpha values with alphaValue (only valid if destColorChannels has a value of 4). (nonzero - set, 0 - no set). 
unsigned char alphaValue; // Value used to set all Alpha values when setAlphaValue is nonzero.  (Valid range is 0 - 255). 
} VPX_GetImageRecord; 

 

 VPX_QUALITY_ 21.15.3

 
#define VPX_DataQuality int 
#define VPX_QUALITY_PupilScanFailed 5 // pupil scan threshold failed. 
#define VPX_QUALITY_PupilFitFailed  4 // pupil could not be fit with an ellipse. 
#define VPX_QUALITY_PupilCriteriaFailed 3 // pupil was bad because it exceeded criteria limits. 
#define VPX_QUALITY_PupilFallBack  2 // wanted glint, but it was bad, using the good pupil. 
#define VPX_QUALITY_PupilOnlyIsGood 1 // wanted only the pupil and got a good one. 
#define VPX_QUALITY_GlintIsGood  0 // glint and pupil are good. 

 VPX_GLINT_QUALITY 21.15.4

 
#define VPX_GlintDataQuality int 
#define VPX_GLINT_QUALITY_ScanFailed  5 // glint scan threshold failed. 
#define VPX_GLINT_QUALITY_FitFailed  4 // glint could not be fit. 
#define VPX_GLINT_QUALITY_WidthCriteriaFailed 3 // glint was bad because it exceeded width criteria limits. 
#define VPX_GLINT_QUALITY_AspectCriteriaFailed 2 // glint was bad because it exceeded aspect criteria limits. 
#define VPX_GLINT_QUALITY_NoOperation  1 // glint skipped because pupil was not found. 
#define VPX_GLINT_QUALITY_Good   0 // glint is good. 



 
Arrington Research 

3/2/2016 
Page 279 

 VPX_STATUS_ 21.15.5

 
typedef enum { 

VPX_STATUS_HEAD=0, 
VPX_STATUS_ViewPointIsRunning, // returns bool, if true, it may be running on remote machine 
VPX_STATUS_VideoIsFrozen,  // returns bool  
VPX_STATUS_DataFileIsOpen,   // returns bool  
VPX_STATUS_DataFileIsPaused, // returns bool  
VPX_STATUS_AutoThresholdInProgress,  // returns bool  
VPX_STATUS_CalibrationInProgress,  // returns bool  
VPX_STATUS_StimulusImageShape, // returns 'I'=isotropic stretch, 'C'=centered, 'F'=fit to window, 'A'=actual 
VPX_STATUS_BinocularModeActive, // returns bool 
VPX_STATUS_SceneVideoActive, // returns bool 
VPX_STATUS_DistributorAttached, // return which VPX_DistributorType is connected to this local DLL. 
VPX_STATUS_CalibrationPoints,  // TENTATIVE :: returns the number of calibrtion points: 6,9,12,...,72 
VPX_STATUS_TTL_InValues,  // TENTATIVE :: bit code for ttl hardware input channels 
VPX_STATUS_TTL_OutValues,  // TENTATIVE :: bit code for ttl hardware output channels 
VPX_STATUS_TorsionActive,  // returns 0 = None, 1 = EYE_A, 2 = EYE_B, 3 = EYE_A && EYE_B. 
VPX_STATUS_BinocularAveraging, // returns VPX_BinocularAveragingType, see section 21.15.6 
VPX_STATUS_TAIL 
} VPX_StatusItem;    // Use with: VPX_GetStatus, eg. after VPX_STATUS_CHANGE notification 

 

 VPX_BinocularAveragingType 21.15.6

 
typedef enum { 

VPX_BinocularAveraging_Off,   // No averaging 
VPX_BinocularAveraging_Only_Y,   // Averages y for both eyes.   
VPX_BinocularAveraging_Both_XY,   // Averages x and y for both eyes to create a single gaze point. 
VPX_BinocularAveraging_ParallaxCorrection,  // Same as Both_XY with parallax correction. 
} VPX_BinocularAveragingType; 
 

 VPX_DistributorType 21.15.7

 

#define VPX_DistributorType  int 

#define VPX_Distributor_None  0 

#define VPX_Distributor_IsViewPoint 1 

#define VPX_Distributor_IsRemoteLink 2 

#define VPX_Distributor_IsEtherClient 3 

 
 The DLL based SDK gets data from, and sends command strings to, a "distributor" application. Normally the distributor application is the 
ViewPoint EyeTracker, but it could be ViewPointClient application.  

// Note: VPX_STATUS_ViewPointIsRunning returns true if ViewPoint is running either directly or via ViewPointClient. 

The ViewPoint distributor does two main things: (a) updates the data in the shared memory of the library, (b) makes sure that 
VPX_SendCommand instructions are sent to the ViewPoint Command Line Interface (CLI). Examples of distributor’s applications are: the 

ViewPoint itself, the ViewPointClient application, for PC, the MAC dylib that contains the ViewPointClient. 

VPX_DistributorType source = VPX_GetStatus( VPX_STATUS_DistributorAttached ); 



 
Arrington Research 

3/2/2016 
Page 280 

 VP_Message_NotificationCodes 21.15.8

typedef enum { 

 VPX_ENUM_NOTIFICATIONS_HEAD = 0, 

 VPX_Obsolete_01 =   1, 

 VPX_DAT_FRESH  =   2, // there is fresh data available 

 VPX_Obsolete_03 =   3, 

 VPX_Obsolete_04 =   4,    

 VPX_CAL_WARN  =   5, // Added vp.2.8.1.12 , follows VPX_CAL_BEGIN to notify "GET READY" 

 VPX_CAL_BEGIN  =   6, // begin calibration sequence 

 VPX_CAL_SHOW  =   7, // index,  (y,x) 

 VPX_CAL_ZOOM  =   8, // radius,  (y,x) 

 VPX_CAL_SNAP  =   9, // index,  (y,x) 

 VPX_CAL_HIDE  =  10, // index,  (y,x) 

 VPX_CAL_END  =  11, // end calibration sequence, doingSlipFix=LOWORD 

 VPX_CAL_TAIL  =  12, 

 VPX_ROI_CHANGE =  13,  // Region Of Interest (ROI) was changed somewhere  

 VPX_Obsolete_14 =  14, 

 VPX_Obsolete_15 =  15, 

 VPX_Obsolete_16 =  16, 

 VPX_Obsolete_17 =  17,  

 VPX_Obsolete_18 =  18, 

 VPX_Obsolete_19 =  19, 

 VPX_COMMAND_STRING =  20, // new 2.7.0.90  

 VPX_STATUS_CHANGE =  21, // new 2.8.1.19 

 VPX_Obsolete_22 =  22, 

 VPX_Obsolete_23 =  23, 

 VPX_Obsolete_24 =  24, 

 

 VPX_VIDEO_FrameAvailable =  25, // was = 501, changed ViewPoint version 2.8.3.457. Notifies 

layered apps that a new image has been updated in their remote window or copied into the dll 

buffer.  LOWORD(lParam) == 0 (remote image), LOWORD(lParam) == 1 (dll buffer) when using CLI 

command "ImageBuffer +EyeA" 

 

 VPX_TRIGGER_EVENT  =  26, // was = 504, changed ViewPoint version 2.8.3.457  

VPX_VIDEO_SyncSignal =  27, // was = 505, changed ViewPoint version 2.8.3.457. Earliest 

notification that a new video image is ready, before image processing and data 

 

 VPX_VIDEO_BufferedImageAvailable   =  28, // Buffered Image available in dll (lParam is 

buffer index). 

VPX_DAT_FRESH_BufferedEyeDataAvailable  =  29, // Buffered EyeData available in dll (lParam is 

buffer index). 

 

 VPX_TTL_IN  =  164, // Reserved: ViewPoint internal use only. 

 VPX_TTL_OUT  =  165, // Reserved: ViewPoint internal use only. 

   

 VPX_ENUM_NOTIFICATIONS_TAIL 

} VP_Message_NotificationCodes; 

 



 
Arrington Research 

3/2/2016 
Page 281 

 VPX_ParseType 21.15.9

 
The VPX_ParseType enums referonly to success or failure of the parsing operation.   They do not refer to the success or failure of 

ViewPoint subsequent ly executing command. 

  

typedef enum {  

 VPX_PARSE_HEAD=0,   // 0 should never occur 

 VPX_PARSE_OK,   // 1 indiates OK : New 2.8.1.009, was (PARSE_COMMENT) 

 VPX_PARSE_ACTION,   // 2 indicates immedate return 

 VPX_PARSE_END,   // 3 ( result <= VPX_PARSE_END ) ? "OK" : "ERROR" 

 VPX_PARSE_COMMENT,  // 4 <- INSERTED, moved from VPX_PARSE_OK location 2.8.1.009 

 VPX_PARSE_OBSOLETE,  // OBSOLETE commands. 

 VPX_PARSE_ERROR_HEAD,  // error = ( result > VPX_PARSE_ERROR_HEAD ) 

 VPX_PARSE_ERROR_UnknownCommand,   // from: VP parser; Command not recognized by the parser. 

 VPX_PARSE_ERROR_MissingParameter, // from: VP parser; Command is missing a parameter. 

 VPX_PARSE_ERROR_EmptyLine,  // from: VP parser; Command is empty or whitespace. new 2.7.0.090 

 VPX_PARSE_ERROR_SendMessageTimeOut, // sent from: DLL; Timeout occurred waiting for VP parser. 

 VPX_PARSE_ERROR_IllegalParameter, // sent from: VP parser; Command has an illegal parameter. 

 VPX_PARSE_ERROR_ParserIsNotRunning, // sent from: DLL; ViewPoint Parser is not running. 

 VPX_PARSE_ERROR_SendMessageFailed,  // sent from: DLL, Failed to communicate with VP parser.  

 //  (Try running all apps using the dll as administrator or not) 

 VPX_PARSE_TAIL  

} VPX_ParseType; 

 

 VPX_CallbackResult 21.15.10

typedef enum { 

 VPX_CALLBACK_HEAD, 

 VPX_CALLBACK_INSERTED, 

 VPX_CALLBACK_INSERT_DUPLICATE, 

 VPX_CALLBACK_LIST_LENGTH_EXCEEDED, 

 VPX_CALLBACK_INSERT_ERROR, 

 VPX_CALLBACK_REMOVED, 

 VPX_CALLBACK_NOT_FOUND, 

 VPX_CALLBACK_LIST_IS_EMPTY, 

 VPX_CALLBACK_REMOVE_ERROR, 

 VPX_CALLBACK_TAIL 

} VPX_CallbackResult; 



 
Arrington Research 

3/2/2016 
Page 282 

 VPX_EyeDataRecord 21.15.11

typedef struct {  
double torsionDegrees ; 
double pupilAspectRatio ; 
double dataTime ;   // precision time value at last video sych time 
double dataDeltaTime ;  // difference between previous and current dataTime 
double storeTime ;  // precision time value at last fresh data 
double storeDeltaTime ;  // difference between previous and current dataTime 
double fixationSeconds ;  // new: precision seconds binocular 
double totalDrift ; 
double totalVelocity ; 
 
// GazeSpace Data 
VPX_RealPoint  gazePoint ; 
VPX_RealPoint  gazePointSmoothed ; 
VPX_RealPoint  gazePointCalculated ; 
VPX_RealPoint  gazeAngle ; 
VPX_RealPoint  gazeAngleSmoothed ; 
VPX_RealPoint  gazeAngleCalculated ; 
VPX_RealPoint  pupilSize ; 
double  pupilDiameter_MM; 
double  pupilAngle ; 
int   regionCode ; 
int   fixationDuration ;  // old: milliseconds monocular deprecated 
VPX_EyeEventType blinkEvent ;   // new: 2.8.3.26 
VPX_EyeEventType moveEvent ;   // new: 2.8.3.26 
VPX_RealPoint  componentVelocity ; 
 
// EyeSpace Data 
VPX_RealPoint pupilCentroid ; 
VPX_RealPoint glintCentroid ; 
VPX_RealRect pupilOvalRect ; 
VPX_RealPoint pupilPosition ; 
VPX_RealPoint glintPosition ; 
VPX_RealPoint diffVector ; 
VPX_GlintRecord glintList[MAX_GLINTS]; 
int  glintCount; // Number of active glints in the glintList.  Was set from glintsWanted at the time the eye record 

was set. 
int  dataQuality ; // Quality for entire EyeDataRecord (includes pupil and glints). 
int  panelHit ; 
VPX_RoiHitListType roiHitList;   // The first time, Clear will set all to -1 
VPX_RoiHitListType roiEventList;  // +N indicates newly inside, -N indicates newly outside 
int   roiHitListLength; 
VPX_EyeType  eye; 
} VPX_EyeDataRecord;  

 



 
Arrington Research 

3/2/2016 
Page 283 

21.16 CalibrationEventRecord (moved to 21.8.1) 
Upon receiving any calibration event (VPX_CAL_*) the details can be obtained via the function VPX_GetCalibrationEventRecord 
 

typedef struct { 

 int  calEvent;   

   // VPX_CAL_WARN=5, VPX_CAL_BEGIN=6, VPX_CAL_SHOW=7, VPX_CAL_ZOOM=8,  

   // VPX_CAL_SNAP=9, VPX_CAL_HIDE=10, VPX_CAL_END=11 

 int index1;     

   // cv.EyeSpace.selection1  { 1 ... N }  

 VPX_RealPoint  stimPtA, stimPtB;   

   // calibration StimulusPoint location for EyeA and EyeB 

 int  slipMode;   

   // boolean: pv.doingSlipFix 

 int  snapMode;   

   // Timing : Snap OR Zoom : cv.calibration.snapMode  

   // VPX_CAL_SNAP only, otherwise VPX_CAL_(BEGIN/ZOOM/SNAP/END)  

   // from TIMER with ZOOM stimulu(s,i), calibratePoints1(a,a)?? 

 int singlePoint;   

   // booleand 1: Only a single point is being calibrated. 

   // Range  : calibratePoints1(a,a) OR  calibratePoints1(a,b) 

 int zoomSize;  

   // { N ... 0  ... N }, Can be used for the diameter of stimulus. 

 int eyes;   

   // 1=EyeA, 2=EyeB, 3=Both; Eyes can be calibrated together or separaely. 

} CalibrationEventRecord; 

 

 

 

  



 
Arrington Research 

3/2/2016 
Page 284 

21.17 Legacy, Obsolete, & Deprecated 

 
Do not use the following for new work. They are described here only for reference use with already 

existing code and to provide a migration path for new code development. 
????? Remove this section ???? 



 
Arrington Research 

3/2/2016 
Page 285 

Chapter 22. Troubleshooting  

This section discusses some of the common sources of error and problem areas. Once recognized, 
many of these can be avoided.  

22.1  History Window 

The History window can be a very useful tool for troubleshooting many problems including video 
and Settings file problems. Use menu item: Windows > History to show the window.  

Selecting menu item: File > Settings > Verbose Loading will display extra information from the parser, 
which is useful for troubleshooting the CLI commands. 

22.2  Improving Frame Rate  

The video frame rate will be compromised when other demands are made on the computer. Ways 
to improve video frame rate include:  

Closing the EyeSpace window and the History window will significantly improve performance.  
Turn off “Show Dots” in the EyeCamera window.  
Turn off the screen saver.  
Ensure that there are no other applications running that are not required.  

22.3  EyeCameraWindow Troubleshooting  

If a video source was connected to the computer when ViewPoint was started, the EyeCamera 
window should display the captured video image. Otherwise, follow the following troubleshooting tips:  

The EyeCamera window shows *** FROZEN ***, then you should select the snowflake icon on the 
EyeCamera window to unfreeze the video processing.  

Ensure that the frame grabber board and drivers have been correctly installed. Check in the 
Windows Device Manager for conflicts.  

Reset the video:  EyeCamera window > monitor icon > Reset EyeCamera Video 

Note: If a camera is disconnected and reconnected then ViewPoint will automatically try to reset 
the video pipe to get it working again. ViewPoint tries 2 resets and displays each attempt in the 
History window. 

If the EyeCamera window background is black, white or blue, then check the following:  
The camera is plugged into the computer properly 
The camera is getting power that it needs, e.g., from a power supply  
The camera is getting enough light 
The camera iris adjustment is open 
The lens cap has been removed!  
If the EyeCamera window video segmentation is not working make sure the display monitor is set to 

True Color (32 bit).  

 Bottom Half of EyeCamera Window is Black (Analog 60 Hz products) 22.3.1

If the bottom of EyeCamera image is black as in Figure 45 then the video standard has been set to 
PAL or SECAM, but the camera is NTSC. All ARI supplied cameras are NTSC. Select the monitor icon on 



 
Arrington Research 

3/2/2016 
Page 286 

the EyeCamera window > Video Standard > NTSC. Also check any Settings file that may be loaded, e.g. 
StartUp.txt that may specify a different video standard. 

 

 

 EyeCamera Window if Incorrect Video Mode Selected  Figure 45.

 
Video Mode set to SECAM 

 
Video Mode set to PAL 

 

High Speed ViewPoint (e.g. USB 220), may have a black band at the bottom as part of normal 
operation. 

22.4  General Troubleshooting  

If the color of the sliders and buttons are different than the window background, change the 
MSWindows appearance settings in the Windows Controls > Display > Appearance to the Windows Standard 
scheme.  



 
Arrington Research 

3/2/2016 
Page 287 

Chapter 23. Error Codes 

23.1  Introduction to Error Codes 

Check whether the error code has a description and remedy below. If not, ViewPoint error codes 
provide a good way for customers to precisely communicate problems to our support team, and thus 
more quickly obtain useful help.  

 
Error # Error String Remarks & Remedies 

0 VP_ERROR_Undefined This is a place holder and should be used. 

   

 Launch errors  

1 VP_ERROR_UnsupportedOS     

2 VP_ERROR_MaxLicenses    

3 VP_ERROR_DllIsLocked   

4 VP_ERROR_AppCountTwoExceeded    

5 VP_ERROR_AppCountOneExceeded    

   

22 VP_ERROR_ElevatedVistaModeRequired Run app as administrator 

   

120 VP_ERROR_ControlTabInit    

121 VP_ERROR_ControlTabNullWindow   

122 VP_ERROR_ControlTabInsertItem   

123 VP_ERROR_ControlTabIsNull  

    

130 VP_ERROR_ListBoxDeleteStringError  

   

140 VP_ERROR_LoadMenuFailed  

   

150 VP_ERROR_normalValue_fromSlider  

   

220 VP_ERROR_StimulsDisplay     

221 VP_ERROR_HideStimulsWindowError  

   

 200s file errors  

201 VP_ERROR_BadDataFileHandle     

202 VP_ERROR_FileNameIllegalChars     

203 VP_ERROR_FileNameEmptyString    

204 VP_ERROR_ImageFileLoad     

205 VP_ERROR_EyeMovieSetThreadPriority   

    

 300s are PenPlot errors  

300 VP_ERROR_PenPlots     

301 VP_ERROR_PenPlot_HiLoMismatch   

302 VP_ERROR_PenPlot_InvalidEye  

303 VP_ERROR_PenPlot_OutOfRange  

   

 500s are License & Decrypt errors  

502 VP_ERROR_CryptFileEndError  

503 VP_ERROR_CryptFileDataInvalid   May have unreadable characters in file 

504 VP_ERROR_LicenseDataOpenError   

505 VP_ERROR_DecryptCreateKeyContainer  

506 VP_ERROR_DecryptServiceHandle   

507 VP_ERROR_DecryptHeaderLength   

508 VP_ERROR_DecryptMemoryAlloc   

509 VP_ERROR_DecryptFileHeader    



 
Arrington Research 

3/2/2016 
Page 288 

510 VP_ERROR_DecryptCryptImportKey   

511 VP_ERROR_CryptCreateHash   

512 VP_ERROR_CryptHashData     

513 VP_ERROR_CryptDeriveKey  Windows98 error, must use Windows XP 

514 VP_ERROR_CryptDestroyHash  

515 VP_ERROR_DecryptOutOfMemory  

516 VP_ERROR_DecryptReadingCiphertext   

517 VP_ERROR_CryptDecrypt   

518 VP_ERROR_DecryptSourceClose    

519 VP_ERROR_CryptReleaseContext    

520 VP_ERROR_LicenseDirectoryMissing   

521 VP_ERROR_LicenseFileMissing    

522 VP_ERROR_LicenseFileInvalid    

523 VP_ERROR_LicenseNumberInvalid    

524 VP_ERROR_CryptDestroyKey Was previously 518 

   

 600s are EyeMovie  

601 VP_ERROR_MovieFileNotFound    

602 VP_ERROR_MovieFileReadError    

603 VP_ERROR_MovieFileBadFormat    

604 VP_ERROR_MovieFileMemoryError   

605 VP_ERROR_MovieFileOpenError   diagnosis of exclusion 

606 VP_ERROR_EyeMovieSetThreadPriority  

607 VP_ERROR_EyeMovie_NoVideoStream  

   

 700s video errors   

701 VP_ERROR_VideoInitializationFailed   was previously 101 

702 VP_ERROR_VideoStartupFailed    was previously 102 

703 VP_ERROR_VideoChannelFailed  was previously 103 

    

 900s ethernet errors   

901 VP_ERROR_EthernetError Currently not used 

    

 1000s are for bad function arguments  

1001 VP_ERROR_BadCalibrationSpeedValue Must be in range: (1-400) 

1002 VP_ERROR_BadCalibrationISIValue  Must be in range: (0-9) 

1003 VP_ERROR_BadCalibrationWarningTimeValue Must be in range: (1-100) 

   

 2000s are for Date & Time  

2001 VP_ERROR_StringFormat_LongDate  

2002 VP_ERROR_StringFormat_ShortDate  

2003 VP_ERROR_StringFormat_TimeOfDay  

   

 3000s utilities  

3001 VP_ERROR_EnsureSubDirectory   

3002 VP_ERROR_EnsureSubDirectoryFolder   

3003 VP_ERROR_SettingsFolderCreatedNotice  

 4000s LC1 errors  

4001 VP_ERROR_LC1_InvalidVideoChannel  

4002 VP_ERROR_LC1_AllocImageBufferError  

4003 VP_ERROR_LC1_AddBufferToSequenceError  

4004 VP_ERROR_LC1_FreeBufferInSequenceError  

   

    

 9300s LC1 Capture Board errors   

9301 VP_ERROR_LC1_Not32BitColor    

9302 VP_ERROR_LC1_ExitBoard     

9303 VP_ERROR_LC1_SetThreadPriority    

9304 VP_ERROR_LC1_NoVideoChannels  



 
Arrington Research 

3/2/2016 
Page 289 

   

 9400s ViewPointMovie (VPM) errors  

9401 VP_ERROR_VPM_WriteFrame    

9402 VP_ERROR_VPM_OpenExisting    

9403 VP_ERROR_VPM_ReadFrame    

   

 9500 AVI 2.0 errors  

9500 VP_ERROR_AVI2_DxDIBService_CoCreate  

9501 VP_ERROR_AVI2_DxDIBService_Provider  

9502 VP_ERROR_AVI2_Writer_BadVideoChan  

9503 VP_ERROR_AVI2_Writer_ServiceFailed  

9504 VP_ERROR_AVI2_Writer_CodecListIndex   

9505 VP_ERROR_AVI2_Writer_CodecSetFailed  

9506 VP_ERROR_AVI2_Writer_RateSetFailed  

9507 VP_ERROR_AVI2_WriterCreateFileFail  

9508 VP_ERROR_AVI2_WriterFailedToAppend   

9509 VP_ERROR_AVI2_GetFrameByIndexFailed   

9510 VP_ERROR_AVI2_OkayToAccessQ_VidChan  

9511 VP_ERROR_AVI2_MissingLibsFolder   

   

 9600s Genric Movies   

9601 VP_ERROR_MovieTypeObsolete_AVI1  

9602 VP_ERROR_MovieFileSizeIsZero  

   

 9700s COM, DCOM etc.  

9701 VP_ERROR_COM_ThreadModeChanged  

   

 9800s Parser, SettingsFile, CLI  

9801 VP_ERROR_CLI_ObsoleteCommand   

 



 
Arrington Research 

3/2/2016 
Page 290 

Chapter 24. History of Eye Tracking Methods  

The quest to be able to determine where the eyes are looking has been long and elusive. Many 
talented individuals have invested many years to achieve this goal and many methods have been tried. It 
is useful to understand some of the methods available, so as to avoid repeating mistakes and to choose 
the best method for a particular purpose.  

24.1  Electrical Methods  

 Surface Recordings  24.1.1

The most obvious solution suggested by most lay people is to record the eye muscle activity around the 
eye, but this electromyographic information is insufficient to determine the Position of Gaze. 
Interestingly however, there is an electrical potential between the front and the back of the eyeball. 
Measurement of this potential is called electro-oculography (EOG). It is relatively easy, but not very 
precise. One of the problems is the potential shows substantial diurnal variation, which necessitates that 
experiments be conducted at the same time of day. This method can also show substantial drift of the 
signal over time.  

 Induction Coils  24.1.2

With this method the head must be inside of a box frame that holds large magnetic induction coils, 
which bathe the head in alternating magnetic fields. The different dimensions of the box use different 
alternation frequencies. Electrical currents will be induced in a coil of wire that is moved inside box. 
Movements in different dimensions can be de-multiplexed by selectively filtering for the different 
alternation frequencies. Permanently implanting coils of wire in the eyes, so called scleral search coils, 
provides one of the most accurate methods of eye tracking available to date. Needless to say, this is 
usually possible only in animal experiments. Alternatively, tight fitting contact lenses can be used in 
humans, but the lead-wires hanging from the contact lenses interfere with normal eye blinks and they 
cannot be tolerated for very long.  

24.2  Optical Methods  

 Reflections or Purkinje Images  24.2.1

Light is reflected from surfaces when there is a change in optical density. This occurs in the eye first at 
the corneal surface (air to cornea), second from the back of the cornea (cornea to aqueous humor), 
third at the front surface of the lens and fourth from the back surface of the lens. These reflections are 
referred to as the first to fourth Purkinje images, respectively. These reflections can be used for eye 
tracking.  

24.2.1.1 Corneal Reflection Tracking  

The first Purkinje image, the reflection from the front of the cornea, is also referred to as glint. An 
infrared light source produces a specular reflection on the smooth cornea, which is recorded by an 
infrared light sensitive device. Used alone, this method is very sensitive to head movement when 
calculating Direction of Gaze.  



 
Arrington Research 

3/2/2016 
Page 291 

24.2.1.2 Other Reflections  

The other Purkinje images can also be used for eye tracking and they can be used in combination with 
one another. One problem is that the higher numbered (deeper within the eye) Purkinje images tend to 
be quite dim compared to the first purkinje image.  

 Dark Pupil Tracking  24.2.2

An un-collimated infrared light source will make even the darkest iris appear light, so as to produce 
a high contrast with the dark pupil that acts as a sink for the infrared light. The pupil edges are located 
and the pupil center is calculated. Used alone, this method is sensitive to head movement when 
calculating Direction of Gaze.  

 Limbus Tracker  24.2.3

The limbus is the junction between the smooth clear cornea and the much rougher white sclera that 
surrounds it. This method takes advantage of there being a difference in the amount of light reflected 
from the cornea compared to the sclera. This reflectivity difference produces a contrast difference that 
can be monitored by photodetectors (e.g. phototransistors, or historically photodiodes); typically two 
photodetectors are placed on either side of the eyeball. Used alone this method is sensitive to head 
movement when calculating Direction of Gaze.  

 Bright Pupil Method  24.2.4

Collimated infrared light reflects off the retina, similar to the reflection we see from the eyes of a 
nocturnal animal, or in red-eye from flash photography. This also can be detected and located. Used 
alone, this method is sensitive to head movement when calculating Direction of Gaze.  

 Corneal Bulge Method  24.2.5

It is possible to calculate the location of the corneal bulge by using an array of detectors placed 
around the eye to sense variations in total infrared reflection. This system has the advantage of being 
able to locate the bulge even when the eye is closed, however it is typically confused by eye blinks. Used 
alone, this method is sensitive to head movement when calculating Direction of Gaze.  

 Vector Difference Method  24.2.6

When using only a single signal there is always confusion between eye movements and head 
movements. Most eye movements are relatively small compared to head movements, even when a 
person thinks that they are holding their head still. A solution is to use two signals that move together in 
a constant way when the head moves, but that varies from one another as the eye moves. By comparing 
only the difference between these two signals, eye movements can be disambiguated from head 
movements. This difference can be thought of as a floating vector. Only the magnitude and direction are 
important, not the absolute position. We will briefly discuss two of these vector difference methods, both 
of which usually employ video image processing.  

One popular vector difference method compares the corneal reflection, i.e., the first Purkinje image, 
to the reflection from the back surface of the crystalline lens, i.e., the fourth Purkinje image, and is often 
referred to as a Purkinje eye tracker. The fourth purkinje image is however quite dim and care must be 
taken not to expose the subject to excessive amounts of infrared light in an attempt to image it.  



 
Arrington Research 

3/2/2016 
Page 292 

The most easily observed vector difference method is sometimes called the Pupil-Corneal Complex 
Method, which is the method used by ViewPoint. In this method it is the difference between the 
position of the corneal reflection and the position of the pupil.  

Vector difference methods are not without problems of their own. (a) There are now two sources of 
position noise instead of one. (b) Given a change in viewing direction, the magnitude of the vector signal 
is smaller than that of the individual signals; the result is a lower signal to noise ratio. (c) While the 
vector difference methods are robust against horizontal (sideways, x-axis) and vertical (up/down, y-axis) 
direction movements, they are more sensitive to in-and-out (closer or farther from the camera z-axis) 
movement of the head. This is because the distance between the two points, i.e., the vector length, 
becomes shorter in video image, as the head is moved backward away from the camera. 



 
Arrington Research 

3/2/2016 
Page 293 

Chapter 25. Hardware Installation  

 
This chapter describes the procedure for the video capture hardware and driver installation process and 
ViewPoint EyeTracker ® software installation.  

IMPORTANT: The display must be set to True Color (32 bit).  

IMPORTANT: Make sure that .NET version 3.5 as well as the latest .NET versions are installed.  

25.1  USB-220 & USB-400 Installation  

There are four main steps to this installation. 
 

 
 

1. Connect the camera to our computer 
Connect the USB cable to your computer and to the camera.  No separate power is required; the camera 
takes power from the computer via the USB cable. 
 

2. Install the USB camera drivers 
When the Windows Found New Hardware wizard appears, cancel.  Browse to the location on your computer 
where you have copied the contents of the ViewPoint disk.   
Find the Drivers > folder and run uEye32_34000.exe. Follow the onscreen instructions to install the drivers. 
NOTE: With Windows-XP letting the wizard automatically locate the software is a good option. 

 
3. Ensure the CameraID is set properly for each camera. 

With Binocular and SceneCamera systems (as of ViewPoint version 2.9.3.115), each camera must be set with a 
unique CameraID number that specifies its use (1=EyeA, 2=EyeB, or 3=Scene). Normally this is done before the 
product is shipped, but can be done by the user with the IDS Camera Manager program. 

In ViewPoint, to view each camera SerialNumber and CameraID, select menu item: Help > Info > 

SysInfo tab and look at the Hardware: line. 
 

4. Power the illuminator 
Connect the USB cable to your computer and to the illuminator.  No separate power is required; the camera 
takes power from the computer via the USB cable. 
 

5. Run ViewPoint 
Run ViewPoint by double clicking the Viewpoint-USB.exe (If you are running Windows Vista you will need to 
right click and select “Run as Administrator”.)  The EyeCamera window will show a video image. 

1. Connect the USB camera to your 
computer. 

2. Install the USB camera drivers. 

3. Power the illuminator. 

4. Run ViewPoint 



 
Arrington Research 

3/2/2016 
Page 294 

 

The EyeCamera window EyeImage is always displayed a 320 X 240, regardless of the mode selected. 
The available modes of operation for this product depend upon the license that was purchased, but in 
general may include: 

 

 USB-220 / USB-400 Spatial and Temporal Resolutions Table 17.
Setting Temporal Resolution (Hz) Internal Processing Spacial Resolution 

 90  90 320 x 240 

220 220 320 x 200 

350 350 240 x 150 

400 400 200 x 120 

 
Note that you may easily upgrade to a higher speed system at any time, by simply purchasing a new 

license that enables higher speeds on your existing camera. Please enquire for details and pricing.  



 
Arrington Research 

3/2/2016 
Page 295 

25.2  60 Hz Video Capture 

The ViewPoint EyeTracker ® 60 Hz products require the special high performance video capture 
device supplied by Arrington Research. It will not work with other video capture devices.  

The 60 Hz models provide three modes of operation that provide a selection of resolutions and 
sampling rates. Which mode you choose will depend on your research or project requirements. You may 
achieve better performance if you calibrate using the High Precision Mode.  

 Setup Mode:    Interlaced 
Temporal Resolution: 30Hz 
Internal Processing: 320 x 240 

 High Precision Mode:  Interlaced 
Temporal Resolution: 30Hz 
Internal Processing: 640 x 480 

 High Speed Normal Mode:  De-interlaced 
Temporal Resolution: 60Hz 
Internal Processing: 320 x 240 

The monitor icon > Mode at the bottom of the EyeCamera window tool bar can be used to select the 
operating mode.  Historically, when computers were slower, the image of the eye only appeared in 
Setup Mode; the other modes only displayed the overlay graphics, to save CPU time. This is no longer 
the case and the term is somewhat misleading because “setup” can be done in any of the modes. This 
mode may better be described as a “low CPU” mode; nevertheless, the old terminology is retained for 
the present. 

 Camera Systems 25.2.1

ViewPoint EyeTracker ® systems that include an analog NTSC video camera and video capture device can 
be used in any country, including those that have PAL or other video standard.  There is no problem 
because the NTSC video camera and the NTSC video capture device makeup a closed video system.  

 Using with Third Party Video Cameras & Signals  25.2.2

The ViewPoint PC-60 analog video capture hardware allows video input that includes the PAL and 
SECAM standards, as well as the default NTSC standard. The ViewPoint USB-60x3 SilverBox currently 
only supports NTSC. 
To change the video input type for the EyeCamera, the user should use the monitor icon on the 
EyeCamera window > Monitor Icon button > Video Standard > * to select the standard that corresponds to the 
type of video camera, video recorder, etc., that is used. The following CLI command may also be used: 

    scene_videoStandard <format>   // where <format> is one of:  NTSC, PAL, SECAM 

The selected video standard is stored in the preferences file and will be used as the default when 
ViewPoint is next run.  

The default setting is NTSC and this should not be modified unless third party video equipment is 
used that specifies a different video standard.  

Specific installation instructions for the 60 Hz products USB-60x3, PC-60, and GigE-60 are found in 
the following sections. 

 
  



 
Arrington Research 

3/2/2016 
Page 296 

25.3  USB-60x3 (SilverBox) Installation and Set Up 

There are five main steps to the USBx3 installation. 

 
 
1. Install ViewPoint EyeTracker®:  Copy the entire Viewpoint folder to your computer. 
2. Connect the USB SilverBox frame grabber to your computer:  Connect the USB cable to your 

computer and to the silver box. No separate power is required; the frame grabber takes power 
from the computer via the USB cable. 

3. Install the drivers for the USB frame grabber:  When the Windows Found New Hardware 
wizard appears, cancel.  Browse to the location on your computer where you have copied the 
contents of the ViewPoint disk.   
Find the Drivers > folder, unzip and run sdk-2255-win_V113-RC6.zip. Follow the onscreen 
instructions to install the drivers. 

4. Power and connect the EyeFrames:  Connect the EyeFrame cables to the USB framegrabber as 
below and then to the 12V transformer. 

5. Run Viewpoint:  Run ViewPoint by double clicking the ViewPoint-USB-60x3.exe (If you are 
running Windows Vista you will need to right click and select “Run as Administrator”.)  The 
EyeCamera window will show a video image. 

 

When using XP letting the wizard automatically locate the software is a good option. 

1. Install the ViewPoint EyeTracker. 

2. Connect the USB SilverBox to your 
computer. 

3. Install the USB frame grabber 
drivers. 

4. Power the EyeFrames or other 
camera systems and connect them to 
the the USB SilverBox . 

5. Run the ViewPoint EyeTracker 



 
Arrington Research 

3/2/2016 
Page 297 

25.4  PC-60 (PCI card) Installation and Set Up 

 

Important Install the Drivers, before installing the card 

1. If you are updating from version 1.x of ViewPoint EyeTracker
® 

or have had another BT848 
video capture device previously installed, you must FIRST remove all of the video capture 
software and drivers from your computer. SECOND, after the driver software has been 
removed, physically remove the old video capture device from your computer before 
proceeding with the new frame grabber installation.  

2. Disconnect from the network prior to installing the drivers. 

A. Installing the New Driver 

1. Insert the ViewPoint EyeTracker
® 

CD-ROM into your CD-ROM drive. 

2. Browse CD to the top level Drivers folder. 
3. Run Setup for your Operating System  

a. Windows XP F:\Drivers\PC-60\Pre vista drivers\lc1_2\English\Disk1\Setup.exe 
b. Win 7 32bit  F:\Drivers\PC-60\Windows 7 32 BIT\Setup\Setup.exe 
c. Win 7 64 bit F:\Drivers\PC-60\Windows 7 64 BIT\Setup\Setup.exe  

(If F is not the device letter of your CD-ROM drive, substitute with the correct drive letter). 
4. Follow the onscreen instructions to complete installation.  

5. Restart your computer when instructed to.  

B. Installing ViewPoint EyeTracker
® 

Software 

1. Copy the ViewPoint EyeTracker
® 

folder from the CDROM to the hard drive of your computer.  
2. You may start the program immediately by double clicking the icon of the ViewPoint application 

program.  
This directory structure must be maintained for proper functioning of the software.  The ViewPoint 

software will not run without the .dll file. Do not make illegal copies. 

 
 C.  Installing the New Frame Grabber 

1. Turn off the computer, and then disconnect the power cable.  
2. Remove the cover panel from your computer. If necessary, consult your computer system 

manual for instructions.  
3. Remember to discharge your body's static electricity by touching the metal area of the computer 

chassis.  
4. Select an empty PCI or PCIe slot card depending on the card and remove the slot cover.  
5. Install the card into the slot, paying particular attention that the card is inserted and seated 

correctly.  
6. Screw the card into place.  
7. Replace the cover panel.  
8. Reconnect the power cable and turn on the computer.  
9. If the update device driver wizard starts.  Click cancel. 
10. If the Windows “Found New Hardware Wizard” asks you if you would like to connect to 

Windows update to search for the drivers select “No, not at this time” and “Next”. 
11. Select “Install the software automatically” and “Next”. 
12. At the next dialogue box, with the top line item highlighted select “Next”. 
13. At the “not digitally signed” warning select “Continue Anyway”. 
14. Select Finish. 



 
Arrington Research 

3/2/2016 
Page 298 

NOTE: you will have to repeat the above steps for each input if you have a binocular or scene camera 
version of the eye tracker. 

 

 Frame Grabber Connections  Figure 46.

 
 

D. Troubleshooting 
1. Problems with ViewPoint Eyetracker. 

Device Manager > Sound, video and game controllers.  Manually install drivers 
All drivers must be installed for the card, even if they will not be used. With a monocular card, two video 

and two Audio drivers should appear; with a Binocular & Scene cards, four Audio and four Video drivers 
should be present. 

 



 
Arrington Research 

3/2/2016 
Page 299 

 All drivers must be installed, even if they are not being used. Figure 47.

 
 

  



 
Arrington Research 

3/2/2016 
Page 300 

25.5  GigE-60 Installation and Set Up (Discontinued)  

There are four main steps to the GigE-60 installation: 
 

 
 
Install iPort software:  Locate the Driver folder on your disk and double click 

iPORT_IPEngineSDK_2.4.1.921.exe  and follow the on screen instructions to install the iPort 

Vision Suite. You do not need to install any drivers or the iPort PureGev suite. 
Setup your computer to use a Static IP Address (only necessary for a direct connection):   

Use IP address:  192.168.1.250 
Step by step instructions for this are included in the next section. 

Connect the cable with the special 4-pin ”AutoIris style” connector to GigE-60 box and computer  
Connect the GigE-60 IP Engine to the EyeFrame cable and then to the computer’s Ethernet port using 
the supplied Ethernet cable.  *** important: do no leave your unit running when not in use. 

Run ViewPoint 
Before starting ViewPoint, make sure that the cameras and GigE-60 IP Engine are connected and 
powered. Run ViewPoint by double clicking the Viewpoint GigE-60.  The EyeCamera window will show 
a video image.  

If connecting a SceneCamera system, select menu option Stimuli > View Source > Head Mounted 
SceneCamera to see an image through the SceneCamera in the GazeSpace window. 

Now refer to the ViewPoint EyeTracker® UserGuide. 

 Trouble Shooting 25.5.1

Check cabling 
Make sure that the power plug is fully inserted into the power jack on the ViewPoint GigE-60 IP-

Engine -- you should normally hear two clicks when fully inserted 
Make sure only one network controller is active. Deactivate any additional Ethernet or wireless 

networks [4] 
If ViewPoint GigE-60 program cannot connect to the GigE-60 IP-Engine or if the IP address of the 

GigE-60 IP-Engine must be changed, close the ViewPoint GigE-60 program and use the Coyote program 
a. Click detect on the Connection tab 
b. Right Mouse Click the detected IP Engine and select “set IP” to set the IP address for the device 
c. To test the connection, press the “Select” button and then camera type “SAA 7115” (not progressive) 
d. Open the Acquisition tab and press start for each channel   

1. Install iPort Vision Suite 

2. Setup your computer to use a Static 
IP Address (direct  connection only) 

3. Connect  EyeFrame or other camera 
cable to GigE-60 box and computer 

4. Run ViewPoint 



 
Arrington Research 

3/2/2016 
Page 301 

 Static IP address setup. 25.5.2

Figure 48 below shows and describes how to set a static IP address: 

Before you make any changes, write down the settings that appear on your computer in a window like the 
one below. If something goes wrong you can always change the settings back to what they were!  

 Static IP Address Settings Figure 48.

 

a) Select radio button to: Use the following IP address: 
b) Enter at IP address:  192.168.1.250  

c) Enter at Subnet mask:  255. 255. 255.0 Subnet 

d) Ignore the DNS server part 

The following figures show typical ways to access the above dialog for setting a static IP address. Often there is 
more than one way to access this dialog and they vary widely between operating systems. 

 



 
Arrington Research 

3/2/2016 
Page 302 

 Windows-7 : Getting Internet Protocol Properties  Figure 49.

a.  b.  

c.  d.  

a) Open the Windows Start menu and click Control Panel 
b) In the Control Panel, under: Network and Internet, press: View network status and tasks 
c) In the Network and Sharing Center, press next to Connections: Local Area Connection 
d) In Local Connection Status, press: Properties 
e) Select: Internet Protocol Version 4 (TCP/IPv4), then press: Properties 

 



 
Arrington Research 

3/2/2016 
Page 303 

 Windows Vista: Getting Internet Protocol Properties  Figure 50.

a.  b.  

c.  d.  

Open the Windows Start menu and click Control Panel 
a) In the Control Panel, double-click: Network and Sharing Center 
b) In the Network and Sharing Center, single click Manage Network Connections on the left side 
c) Click on Local Area Connection  
d) Select: Internet Protocol Version 4 (TCP/IPv4), then press: Properties 



 
Arrington Research 

3/2/2016 
Page 304 

 GigE-60 Installation and Setup 25.5.3

The ViewPoint GigE-60 TM uses gigabit Ethernet for real-time transfer of video images to the 
computer running the ViewPoint EyeTracker ® software. 

25.5.3.1 Ethernet NIC 

To work correctly in all modes, ViewPoint GigE-60 TM requires a gigabit Network Interface Card (NIC) 
or Integrated NIC port on a PC or laptop [1] .  

An additional benefit is that all Gigabit devices use Auto MDI/MDIX to automatically switch to the 
proper configuration once a cable is connected, which obviates concerns about when to use a cross-over 
cable [2] .  

Do not use a wireless network device (e.g.: 802.11a/b/g/n) for connecting the GigE-60 IP Engine, it 
will not work. 

25.5.3.2 Ethernet TCP/IP 

The GigE-60 IP-Engine can be connected to the computer either (a) with a Direct connection, or (b) 
through a routing network using DHCP.  

In either case, the GigE-60 IP-Engine and the NIC must be setup to be on the same network with the 
same subnet; otherwise the computer will not find the GigE-60 IP-Engine.   

The GigE-60 IP-Engine has the following IP address burnt into firmware: 192.168.1.249.  

25.5.3.3 Direct Connection 

A Direct connection is when the GigE-60 IP-Engine is connected to the computer with a single cable -
- no network switches or router is used. For the fastest and most reliable connection [3] we recommend 
setting the following static IP address for the computer's NIC: 192.168.1.250.  

25.5.3.4 DHCP Network Connection  

The network connection will work fine if there is no additional traffic on the network (downloading 
files, surfing the net) at the same time, if all the switches and the router are gigabit, and if all the cable is 
at least CAT-5e. This may be best if you are using a desktop computer with only one NIC that is 
connected to a close-by switch/router with a free jack. 

ViewPoint GigE-60 should be able to locate the GigE-60 IP-Engine as is, unless there is another 
device on the network that has the same IP address as the GigE-60 IP-Engine -- in which case the IP 
address for one of the devices must be changed. 

25.5.3.5 Ethernet Cable 

The Ethernet physical connection requires a standard CAT-5e network cable with RJ-45 plugs (male). 
CAT-6, CAT-6e, or better cables have a higher bandwidth, but they are not required and they may be 
thicker, heavier and more expensive.. 

Note: The GigE-60 IP Engine by itself requires only .21 amps, but when the wireless hardware option 
is powered through this it requires an additional .6 amps.  To allow for this we nominally specify .81 
amps for the GigE-60 IP Engine. 



 
Arrington Research 

3/2/2016 
Page 305 

Chapter 26. Latency 

The ViewPoint~Voltage program includes a test to measure latency. This software alternately 
switches two LEDs On and Off and then measures the time that it takes to receive an ROI event from 
ViewPoint (in bright pupil mode), which indicates that the light position changed. This “round trip” 
latency time is quantitive and reproducible.  

Differences in latency come from different hardware systems and from the exposure time that is 
set on digital cameras – the faster the camera speed the lower the latency. Here is a table that provides 
the results of some of our tests. You may want to reproduce these tests on the system that you are 
using. 

 Latency of various systems Table 18.
Product Average Latency (milliseconds) 

USB-400 6 

USB-220 10 

PC-60 (same for 30 or 60 Hz) 55 (varies 50 to 60) 

USB-60x3 @ 60 Hz 
USB-30x3 @ 30 Hz 

65 (varies 50 to 80) 
105 (varies 90 to 130) 

GigE-60 80 

 



 
Arrington Research 

3/2/2016 
Page 306 

Chapter 27. Safety 

27.1  Infrared Light  

The value of using infrared light is illustrated in Figure 51. The left side of the figure shows an image 
in normal light; for this subject the pupil of the eye is almost impossible to discriminate from the dark 
iris. The right side of the figure shows an image of the same eye, but viewed with an infrared sensitive 
camera under infrared lighting conditions; the pupil is easily discriminated. Note that in each case the 
subject is wearing a contact lens.  

 Infrared light allows for pupil discrimination  Figure 51.

  
There should always be the utmost concern for the safety of the subject. The issue of safe limits of 

infrared (IR) irradiance is frequently discussed.  
10 mW / cm sq is probably the safe maximum figure for corneal exposure over a prolonged period 

(Clarkson, T.G. 1989, Safety aspects in the use of infrared detection systems, I. J. Electronics, 66, 6, 929-
934).  

The infrared corneal dose rate experienced out of doors in daylight is of the order of 10-3 W / cm-2. 
Safe chronic ocular exposure values particularly to the IR-A (750-1400nm), probably are of the order of 
10-2 W/ cm-2” (D.H. Sliney & B.C. Freasier, Applied Optics, 12:1, 1973).  

ISO/DIS 10342 (page 7) gives maximum recommended fundus irradiance for use in Ophthalmic 
Instruments of 120 mW / sq cm but this is for short-term exposure.  

All IR-illuminator and camera systems provided by Arrington Research, Inc. are designed to be well 
within safe limits of exposure.  

Add: COGAIN IST-2003-511598 

 



 
Arrington Research 

3/2/2016 
Page 307 

Chapter 28.  ARI Software License 

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT “AGREEMENT” CAREFULLY BEFORE USING THE 
SOFTWARE. BY USING ALL OR ANY PART OF THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY ALL 
OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU ACQUIRED THE SOFTWARE ON TANGIBLE 
MEDIA (e.g. CD) WITHOUT AN OPPORTUNITY TO REVIEW THIS AGREEMENT AND YOU DO NOT ACCEPT 
THIS AGREEMENT, YOU MAY OBTAIN A REFUND OF ANY AMOUNT YOU ORIGINALLY PAID IF YOU: (A) DO 
NOT USE THE SOFTWARE AND (B) RETURN IT, WITH PROOF OF PAYMENT, TO THE LOCATION FROM 
WHICH IT WAS OBTAINED WITHIN THIRTY (30) DAYS OF THE PURCHASE DATE.  

1. Definitions: "Software" means (a) all of the contents of the files, disk(s), CD-ROM(s) or other media with which this 
Agreement is provided, including but not limited to (i) ARI or third party computer information or software; (ii) digital images, 
stock photographs, clip art, sounds or other artistic works ("Stock Files"); and (iii) related explanatory written materials or files 
("Documentation"); and (b) upgrades, modified versions, updates, additions, and copies of the Software, if any, licensed to you 
by ARI (collectively, "Updates"). "Use" or "Using" means to access, install, download, copy or otherwise benefit from using the 
functionality of the Software in accordance with the Documentation. "Permitted Number" means one (1) unless otherwise 
indicated under a valid license (e.g. volume license) granted by ARI. "Computer" means an electronic device that accepts 
information in digital or similar form and manipulates it for a specific result based on a sequence of instructions. "ARI" means 
Arrington Research, Inc., an Arizona corporation.  

2. Software License As long as you comply with the terms of this Agreement, ARI grants to you a non-exclusive license to 
use the Software for the purposes described in the Documentation. You may install and use a copy of the Software on your 
compatible computer, up to the Permitted Number of computers; You may make one backup copy of the Software, provided 
your backup copy is not installed or used on any computer. The software accompanying this Agreement, whether on disk, on 
compact disk, in read only memory, or any other media, the related documentation and other materials (collectively, the “ARI 
Software”) are licensed, not sold, to you by ARI. The ARI Software in this package and any copies, modifications and 
distributions which this Agreement authorizes you to make are subject to this Agreement.  

3. Intellectual Property Rights. The Software and any copies that you are authorized by ARI to make are the intellectual 
property of and are owned by ARI. The structure, organization and code of the Software are the valuable trade secrets and 
confidential information of ARI. The Software is protected by copyright, including without limitation by United States Copyright 
Law, international treaty provisions and applicable laws in the country in which it is being used. You may not copy the Software, 
except as set forth in Section 2 ("Software License"). Any copies that you are permitted to make pursuant to this Agreement 
must contain the same copyright and other proprietary notices that appear on or in the Software. You also agree not to reverse 
engineer, decompile, disassemble or otherwise attempt to discover the source code of the Software. Trademarks can only be 
used to identify printed output produced by the Software and such use of any trademark does not give you any rights of 
ownership in that trademark. Except as expressly stated above, this Agreement does not grant you any intellectual property 
rights in the Software. The ARI software may only be used by you for the purpose described herein and may not be disclosed to 
any third party or used to create any software which is substantially similar to the expression of the Software.  

4. Transfer. You may not rent, lease, sublicense or authorize all or any portion of the Software to be copied onto another 
user’s computer except as may be expressly permitted herein. You may, however, transfer all your rights to use the Software to 
another person or legal entity provided that: (a) you also transfer each this Agreement, the Software and all other software or 
hardware bundled or pre-installed with the Software, including all copies, Updates and prior versions, to such person or entity; 
(b) you retain no copies, including backups and copies stored on a computer; and (c) the receiving party accepts the terms and 
conditions of this Agreement and any other terms and conditions upon which you legally purchased a license to the Software; 
(d) you obtain prior written permission from ARI. Notwithstanding the foregoing, you may not transfer education, pre-release, 
or not for resale copies of the Software.  

5. Limited Warranty on Media: ARI warrants to the person or entity that first purchases a license for the Software for use 
pursuant to the terms of this agreement, that the software is recorded to be free from defects in materials and workmanship 
under normal use for a period of ninety (90) days from the date of original purchase. Non-substantial variations of performance 
from the Documentation does not establish a warranty right. THIS LIMITED WARRANTY DOES NOT APPLY TO UPDATES, OR NOT 
FOR RESALE (NFR) COPIES OF SOFTWARE. To make a warranty claim, you must request a return merchandize authorization 
number, and return the Software to the location where you obtained it along with proof of purchase within such ninety (90) 
day period. The entire liability of ARI and your exclusive remedy shall be limited to either, at ARI’s option, the replacement of 
the Software or the refund of the license fee you paid for the Software. THE LIMITED WARRANTY SET FORTH IN THIS SECTION 
GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE ADDITIONAL RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION.  



 
Arrington Research 

3/2/2016 
Page 308 

6. Disclaimer of Warranty. Some of the ARI Software may be designed as alpha, beta, development, continuing 
development, pre-release, untested, not fully tested or research only versions of the ARI Software. Such ARI Software may 
contain errors that could cause failure of loss of data, and may be incomplete or contain inaccuracies. You expressly 
acknowledge and agree that use of the ARI Software is at you sole risk. The ARI Software is provided “AS IS” and without 
warranty of any kind and ARI and ARI’s licensor(s) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ARI DOES 
NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE ARI SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE 
OPERATION OF THE ARI SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE ARI SOFTWARE WILL 
BE CORRECTED. FURTHERMORE, ARI DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE 
RESULTS OF THE USE OF THE ARI SOFTWARE OR IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. 
NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY ARI OR AN ARI AUTHORIZED REPRESENTATIVE SHALL CREATE A 
WARRANTY OR IN ANYWAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE ARI SOFTWARE PROVE DEFECTIVE, YOU 
(AND NOT ARI OR AN ARI AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR 
CORRECTION. THE LICENSE FEES FOR THE ARI SOFTWARE REFLECT THIS ALLOCATION OF RISK. SOME JURISDICTIONS DO NOT 
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.  

7. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEGLIGENCE, SHALL ARI BE LIABLE FOR ANY INCIDENT, 
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO USE THE ARI SOFTWARE, EVEN IF ARI OR 
AN ARI AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO 
NOT ALLOW LIMITATIONS OR EXCLUSION OF LIMITED LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE 
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. In no event shall ARI’ s total liability to you for all damages, losses 
and causes of action (whether in contract, tort (including negligence) or otherwise) exceed the license fee that you paid for the 
Software.  

8. High Risk Activities: Effort has been made to provide a bug-free product. Nevertheless, this software is not fault tolerant 
and is not designed, manufactured or intended for use or resale in the operation of nuclear facilities, aircraft navigation or 
communications systems, or air traffic control, or medical treatment and diagnosis, or for any other use where the failure of the 
Software could lead to death, personal injury, damage to property or environmental damage (“High Risk Activities”). ARI 
specifically disclaim any express or implied warranty of fitness for High Risk Activities.  

© Arrington Research, Inc. All rights reserved 100 9. Export Law Assurances. You agree that the ARI Software 

will not be exported outside the United States except as authorized by United States law. You also agree that ARI 
Software  

that has been rightfully obtained outside the United States shall not be re-exported except as authorized by the 
laws of the United States and of the jurisdiction in which the ARI Software was obtained.  

10. Controlling Law and Severability. This Agreement shall be governed by the laws of the United States. If for any reason 
a court of competent jurisdiction finds any provision, or portion thereof, to be unenforceable, the remainder of this Agreement 
shall continue in full force and effect.  

11. Complete Agreement. This Agreement constitutes the entire agreement between the parties with respect to the use 
of the ARI Software and supersedes all prior or contemporaneous understandings regarding such subject matter. No 
amendment to or modification of this Agreement will be binding unless in writing and signed by ARI.  

 

 



 
Arrington Research 

3/2/2016 
Page 309 

Chapter 29.  Third Party Licenses 
 

From time to time, some portions of the ViewPoint EyeTracker ® code may utilize third party 
libraries, or modifications thereof, that have their own License Agreements. These are included here 
below. 

 
Intel License Agreement For Open Source Computer Vision Library  
Copyright (C) 2000-2005, Intel Corporation, all rights reserved. 
Third party copyrights are property of their respective owners.  
Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met: 
 * Redistribution's of source code must retain the above copyright notice, 
  this list of conditions and the following disclaimer. 
 * Redistribution's in binary form must reproduce the above copyright notice, 
  this list of conditions and the following disclaimer in the documentation 
  and/or other materials provided with the distribution. 
 * The name of Intel Corporation may not be used to endorse or promote products 
  derived from this software without specific prior written permission. 

This software is provided by the copyright holders and contributors "as is" and any express or 
implied warranties, including, but not limited to, the implied warranties of merchantability and fitness 
for a particular purpose are disclaimed. In no event shall the Intel Corporation or contributors be liable 
for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not 
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business 
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort 
(including negligence or otherwise) arising in any way out of the use of this software, even if advised of 
the possibility of such damage.  

 
AT&T License Agreement for 2D Convex Hull code 

Some 2D convex hull code is modified from what was written by Ken Clarkson. Copyright (c) 1996 by 
AT&T. 

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby 
granted, provided that this entire notice is included in all copies of any software which is or includes a 
copy or modification of this software and in all copies of the supporting documentation for such 
software. 

 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS 
NOR AT&T MAKE ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS 
FITNESS FOR ANY PARTICULAR PURPOSE. 
  



 
Arrington Research 

3/2/2016 
Page 310 

Chapter 30. Appendix  

30.1 Diagram of the Eye 

We have included a diagram below showing the anatomy of the eye to help with understanding 
some of the terms used in this UserGuide. See Figure 52. 

 
This diagram has been included with thanks to the National Eye Institute and the National Institutes 

of Health (NEI). The NEI website includes a valuable resource of photographs and images. 
 

 Diagram of the Eye  Figure 52.

 
 

  



 
Arrington Research 

3/2/2016 
Page 311 

30.2 Mapping to GazeSpace  

It is often necessary to determine where a person is looking, that is, to determine their ViewPoint, also 
called the Point of Regard (POR), the Position of Gaze (POG), GazePoint, Fixation Location, etc. This task 
is performed by using a mathematical function to map the eye position signal in the EyeSpace 
coordinates of the video image to the gaze point in the GazeSpace coordinates of the visual stimulus. 
There are many algorithms that can be used to perform such a mapping and many of them are company 
proprietary.  By far, the best algorithms are non-linear. This is because the eye movements are 
rotational, i.e., the translation of the eye position signal that is apparent to the camera is a 
trigonometric function of the subject’s gaze angle. Moreover, the camera angle may provide an oblique 
line-of-sight. The ViewPoint EyeTracker ® employs one of the most powerful and robust methods 
available. See Table 19: Schematic of the ViewPoint EyeTracker® System (Head Fixed / HMD). 

30.3 Schematic Bloc Description of ViewPoint 

Table 19 shows how the ViewPoint EyeTracker ® works in a typical head fixed or HMD configuration. 
The numbers in this section refer to the item or block numbers in the figure.  

The infrared light source (item 1) serves to both illuminate the eye (item 2) and also to provide a 
specular reflection from the surface of the eye, i.e., from the smooth cornea. In Dark Pupil Mode, the 
pupil acts as an infrared sink that appears as a black hole; see Figure 51. In Bright Pupil Mode, the “red 
eye” effect causes the pupil to appear brighter than the iris (note that a different camera and illuminator 
configuration is required for bright pupil operation). 

The video signal from the camera (item 3) is digitized by the video capture device (item 4) into a 
form that can be understood by a computer. The computer takes the digitized image and applies image 
segmentation algorithms (item 5) to locate the areas of pupil and the bright corneal reflection (glint). 
Additional image processing (item 6) locates the centers of these areas and also calculates the difference 
vector between the center locations. A mapping function (item 7) transforms the eye position signals 
(item 6) in EyeSpace coordinates to the subject’s GazeSpace coordinates (item 8).  

Eye movements are classified (item 13): fixation, drift, or saccade and blinks are detected. 
Next, the program tests to determine whether the Gaze Point is inside of any of the Region of 

Interest (ROI) that the user has defined.  
The calibration system (item 12) can be used to present calibration stimuli via (item 10) to the user 

and to measure the eye position signals (item 6) for each of the StimulusPoints. These data are then 
used by (item 12) to compute an optimal mapping function for mapping to Position of Gaze in 
GazeSpace (item 7).  

 
 



 
Arrington Research 

3/2/2016 
Page 312 

 Schematic of the ViewPoint EyeTracker® System (Head Fixed / HMD) Table 19.

 



 
Arrington Research 

3/2/2016 
Page 313 

Chapter 31. What’s New & What’s Changed 

31.1 What’s New 

 Pupilometry Calibration with easy to use GUI provides pupil size in millimeters. 
 GazeNudge allows the user to manually correct the calculated POG if it appears shifted. 
 ParallaxCorrection procedure is simplified and made more robust by providing a visual guide. 
 Software Pan & Zoom of EyeImage (currently only on USB-220, USB-400 models). 
 Software Pan & Zoom of EyeMovie content. 
 New GUI window for Command Line Interface provides history, copy, paste, editing, 
 HMD Partial Binocular Overlap (PBO) calibration with separate points for each eye. 
 Manual Calibration features for non-human and non-compliant subjects. 
 DataFile now contains raw gaze and fully corrected gaze values. 
 ObserverWindow option 
 MultiGlint option 

31.2 What’s Changed 

 VPX_GazePointCalculated  VPX_GazePointCorrected 31.2.1

The SDK method VPX_GazePointCalculated was renamed to GazePointCorrected 

 

 RemoteLink & SerialPort Controls (MODIFIED for Ethernet or OBSOLETE) 31.2.2

The SerialPort interface and the old RemoteLink serial port client program have been 
replaced by the Ethernet interface and ViewPointClient that provide more extensive data 
synchronization as well as faster and more reliable data delivery. The SerialPort interface is 
removed from ViewPoint as of version 2.9.3.127. 

 Manual & Pattern simulation options moved 31.2.3

The Manul and Pattern arguments are no longer valid for CLI mappingFeature. 
Use these arguments on CLI: simulationMode 

 Note that simulationMode Pattern has side effect: GazeSpace_MouseAction Simulation ; to turn the 
simulation Off use: GazeSpace_MouseAction None 



 
Arrington Research 

3/2/2016 
Page 314 

 Command Line Interface 31.2.4

There is a Command Line Interface window that is integrated as a ViewPoint window (see Figure 
39); the separate application VPX_CommandLineInterface.exe is no longer supported. The new interface 
provides better feedback about CLI parsing errors and allows easy cutting and pasting and line editing.  

 GazeNudge and GazeNudgeInc replace zeroingSignal_* 31.2.5

Gaze Nudge is now the preferred method relative to the zeroingSignal_* CLI command methods. 

zeroingSignal_reset is equivalent to gazeNudge 0.5 0.5  

zeroingSignal_used NO is equivalent to gazeNudge 0.0 0.0  

zeroingSignal_used YES has no direct equivalent, so just use zeroingSignal_reset again. 

All of this is basically just a simpler yet more general solution.  

Previously the zeroingSignal_reset was applied to VPX_GetGazePoint and to 
VPX_GetGazePointSmoothed, etc. data.  Now the gazeNudge and zeroingSignal_reset are applied only to 
VPX_GetGazePointCorrected,  VPX_GetGazeAngleCorrected, etc. data, and specifically NOT applied 
to VPX_GetGazePoint. 

 

SDK accessor function gazeNudge Notes 

VPX_GetGazePoint  No Changed, now only 
uncorrected 

VPX_GetGazePointSmoothed No Marginalized/Deprecated 

VPX_GetGazePointCorrected Yes New for “ready to use” data 

VPX_GetGazeAngle No Changed, now only 
uncorrected 

VPX_GetGazeAngleSmoothed No Marginalized/Deprecated 

VPX_GetGazeAngleCorrected Yes New for “ready to use” data 

 

 Underscore characters removed from CLI before lookup 31.2.6

The underscore characters in CLI commands are removed before lookup (as of version 2.9.3.115) 
so for instance, either datafileNewUnique or dataFile_NewUnique may be used. 

 DLL mismatch is no longer repored for minor patches. 31.2.7

The version mismatch warning dialog box now only appeas if there is a mismatch in the whole 
number part of the version (as of 2.9.3.115). Consequently, DLL=2.9.3.114 and SDK-2.9.3.115 would not 
produce a warning. All DLL level changes should always be reflected minimmaly in the least significant 
part of the the whole number part, not the decimal part that is for small changes and patches. 



 
Arrington Research 

3/2/2016 
Page 315 

 Added for version 2.9.3.121 31.2.8

videoMirror H V 

setROI_Name 

ipdMeasure 

 Added for version 2.9.3.123 31.2.9

To display the SceneCamera video in the Stimulus window, check the Controls window > Scene tab > 

Show SceneVideo in Stimulus window checkbox, or use CLI: ShowSceneVideoInStimulusWindow BoolValue 
 Version 1.9.3.123 changed this from GUI “Stimulus Scene Video” checkbox, and CLI: 
stimulus_SceneVideo, both now deprecated, because the language was unclear. 

 Added Documentation for EyeMovie controls 2.9.3.123 31.2.10

eyeMovie_NewUnique, eyeMovie_NewName, eyeMovie_Load, eyeMovie_Play, eyeMovie_Zoom, 
eyeMovie_Center, eyeMovie_Speed, eyeMovie_IsBinocular, eyeMovie_Percent, eyeMovie_EndAction 

Some functionality has changed with version 2.9.3.123 

 Version 2.9.3.124 31.2.11

Added:  FreeToggle option for CLI: setWindow. 

Added:  SystemOpen  string  to open system Files, Folders, and http: addreses 

 Version 2.9.3.126 31.2.1

setROI_isoEccentric expaned 
setROI_Shape added 

 Version 2.9.3.133 31.2.2

Removed all legacy SerialPort interfaces (FlockOfBirds, RemoteLink) 
Now use: File > EyeMovie > *  
Notice during program startup if found multiple NICs. 
CameraID used to identify multiple uEye cameras. 
ViewPointClient will no longer continually try to reset when ViewPoint is frozen. 
CLI: setPriority 
Added Free/Child Toggle and Clear to several window’s ControlBox 
Removed legacy HeatMap, Torch, etc. 

 Version 2.9.4.118 31.2.3

Added CLI: help 
 

 

  



 
Arrington Research 

3/2/2016 
Page 316 

31.3 What’s Removed 

acceleratorKeys   BoolValue   // Useless 

eventHistory_Clear // deprecated   use: clearHistory 

verbose +serialSend      
verbose +serialReceive    

 

Serial Port, Flock Of Birds, HeadTracker, Print menu stuff is removed 
 

The old HeadTracking option in ViewPoint has been superseded by the much more sophisticated 
3DWorkSpace option. 
 
 
Macintosh folder has been simplified, everything is under:  ~/ViewPointMacX/ 



 
Arrington Research 

3/2/2016 
Page 317 

Chapter 32. Issues 

32.1 Document Guidelines 

ViewPoint UserGuide  Manual , Guide, etc. 
SamplingArc  sample arc, sampling arc, sampleArc 
LineGraph  strip chart, time-plot, penPlot graphics, etc. 
penPlot graphicsWell  penPlot well 
DataFile  Data file, data file, dataFile, etc. ., but of course keep CLI: dataFile_* 
Settings file  settingsFile, SettingsFile, etc., but of course keep CLI: settingsFile_* 
 

ViewPoint-EyeTracker@ArringtonResearch.com (hypen)    
ViewPoint_EyeTracker@ArringtonResearch.com (underscore that cannot be seen with underline) 
 
Fixed TOC 4 tab problems in UserGuide 099 

32.2 Known Issues with this document 

 midiNote is used in examples, but not documented 
 ViewPoint-EyeTracker@ArringtonResearch.com sometimes does not get delivered! 
 Update dates: (2014) -> (2015) -> (2016) 
 Update OS: Windows-XP, Windows-7, Windows-8, etc. 
 FixMe 
 Update & verify Meaning of type fonts, especially: CLI font format is not consistent. 
 Double check that all string examples are in quotes. 
 Double check that all deferred commands are in braces (and NOT in quotes). 
 Document side-effects of changing calibration settings. 
 Document 3DWS differences in data, penPlots, and effect of controls. 
 Document: MultiGlint – status: None 
 Document: ObserverWindow – Requires special usb camera 
 Document: PBO 8.12.1 & 18.10.23 – status: Needs description of how to do it, eg. 

EyePrefix: ? 
 Clarify CLI take EyePrefix 18.6 & 18.7  And should default to Both:, see: 

scene_videoStandard videoReset 
 Vpx_eyeCameraImageOverlays is this for buffered images? 
 Update: ChangeHistory document 
 Ch.2 Overview – make less technical :  “you want to know where someone is looking” 
 Integrity Section – see new Integrity flyer 
 Verify/Update list of Interface Applications (2.5) and SDK examples 
 Ch.3 Different Calibration Methods – add 3DWS. 
 Are Fig.6 menus up to date? 
 Elaborate Pupil Min/Max Size and Ratio with various thresholds and feature selection. 
 Verify list of 17.2.3 Layered Apps 
 ?? calibration_endAction, calibration_finishedQ, calibration_completeQ ?? see 18.1.4  
 Document? : pictureListFinishedQ ; stimulusPresentationList_FinishedQ  

mailto:ViewPoint-EyeTracker@ArringtonResearch.com
mailto:ViewPoint_EyeTracker@ArringtonResearch.com
mailto:ViewPoint-EyeTracker@ArringtonResearch.com


 
Arrington Research 

3/2/2016 
Page 318 

This is primarily important because it allows post-hoc calibration on pre-recorded movies if the 
subject was looking at a calibration board or know targets. { 
calibration_PointLocationMethod OnContent } see 18.10.18 and 18.10.17 

 Verify penPlot_Range options and show how to list them penPlot_dumpNames 
 Compare and unify: 18.15.1 viewSource and 18.10.7 calibration_PointLocationMethod   
 18.16 windows_dumpNames ? AdvancedCalibration window, TorsionA, TorsionB 

windows? 
 Old settingsFile_verbose <bool>  vs verbose +-option 
 Torsion_smoothing ?? 
 Verify CLI arguments for Binocular:  

o averageOption : Off, only_Y, both_XY, Average, ParallaxCorrection 
 Document CLI: verbose_dump, verbose_dumpNames, ???? and other dumpNames 

options, eg for penPlots.  Cf. vpx_getStatus 
 Does fpsUpdate do anything anymore? It used to be for Status window. Are there now 

smoothing commands? 
 Validate commands:  debugSDK,  vpx_event,  
 Document ViewPoint.exe flags : -hideMain –freeEyeCamera, C.f.  Settings/Startup/ 
 C:\WINDOWS\system32\ 
 theCallbackFunction, needs updating wrt the ‘this’ parameter? 
 VPX_GetDrift2, returns drift vector normalized wrt to what, the window Width? 
 VPX_GetPupilPoint, what is the data value if Centroid method is selected? 
 VPX_SDKFunctionResult (enums?) are not defined anywhere. 
 Under VPX_InsertCallback, VPX_RemoveNonRespondingMessageTargets is mentioned; 

verify that it is used for Callback or is deprecated (as specified under its entry) 
 What if EYE_A=0 or EYE_B=1 is not specified for GetSomething2, is 1 still returned? 
 What is the CLI command to turn Torson ON, mention this at VPX_GetTorsion. 
 Include info about 3DWS & 3DVP hijacked data values, etc. Add other 3D* 
 Does VPX_GetMeasuredScreenSize return valid values with 3DWS ( & 3DVP ), the panel ID 

would need to be specified. VPX_GetROI_RealRect ?? 
 VPX_StatusItem enums are not listed. 
 VPX_GetViewPointHomeFolder  VPX_GetString( VPX_STRING_HomeFolder, *size, *chr) 
 VPX_GetROI_RealRect in 3DWS? 
 _EDR functions ? VPX_ROI_MakeHitListString_EDR ( VPX_EyeDataRecord* 
 Maybe use VPX_6DOF instead of corrupted VPX_PositionAngle ?? 
 VPX_GetVergenceAngle: is this 2D and or 3D, what does angle mean, does 0 mean looking 

at infinity, what are normal expected range of values, wall-eyed ??? 
 VPX_GetGazePoint3D, value (-1.0, -1.0, -1.0) couldn’t this be a real data point in the global 

coordinate system?( why use this as a special flag, when could return something else?) 
 VPX_ROI_CHANGE : WPARAM, shouldn’t this say +n for entry and –n for exit; in  the 

example, how is the roiIndexNumber obtained? 

 19.14.2 says 15 down to 0, but what about the newer bounce effect? 
 Ch. 27 OpenCV license copyright says 2000-2005 
 Safety: Add COGAIN IST-2003-511598 
 Search: “on XP”, “Vista”, 98, etc. 



 
Arrington Research 

3/2/2016 
Page 319 

 Ch. 23 Binocular Option : describe changes and draw red arrows to added things. See 
markup. 

Verify if true: Note: Regions of Interest (ROI) hit lists are triggered by the (possibly smoothed & 
corrected) individual positions of gaze, but with no binocular averaging.  

 Finished Dec-13-A-MARKUP 
 AutoCenter : from auto center, auto-center, etc. 

 dataFile_AnalyzeDialog referenced but not defined. 

 Standardize: /StartUp/ vs /Startup/ folder. 
 Standardize: ShortCuts 

 Verify Print command works 
 Does calibrationStart take an eyePrefix? 
 Unify: pulldown vs pull down 
 Spelling checked through 18.10, restart at 18.11 smoothingPoints 
 Verify: An ROI event is when the POG enters inside or exits outside the ROI, not resting on the 

boundary lines. The test is for the gazePoint entering inside the ROI, not resting on the boundary 
lines. 

 Describe return values for: int VPX_Get…. 
 Can we use a hyphen: ViewPoint-EyeTracker@ArringtonResearch.com 
 Ch.4, Do to say: The latest can be downloaded from our website: 

~/Latest/ViewPointUserGuide.pdf ~/Latest/ViewPointChanges.pdf ~/Latest/Distribution/   
Enter license number to download. 

 Non-breaking spaces (Ctrl-Shift-SpaceBar) for: { CLI }? and [ buttonName ] 
 Section 6.3 Criteria, expand or better point to later section. 
 Unify sec 2.2.4,  2.4.1,  12.9 about SDK, Interfacing, Stimulus Presentation, Control. 
 Ch. 12 is titled Stimulus Presentation, but it has miscellaneous stuff not directly related. 

All needs to be reorganized. 
 Removed: “ROI events are marked with a plus (+) to indicate entering the ROI, and with a 

minus (–) to indicate leaving the ROI.” Because this is not the case in the Events window, 
the Events penPlot or in the DataFile, (maybe only in Python demo?) 

 setROI_Group  9  loads ~/ViewPoint/Settings/ROI/9.txt   
 Elaborate difference between The ViewPoint DataAnalysis program and the CLI: DataAnalysisApp 

specifier 
  

[ SaveCalibrationEyeImages Yes ] This command will also create the folder if it does not exist 
Add: circularPupilCriteria 
17.6 ViewPoint CommandLineTool : list of commands, client:dumpCLI, uso of colons & other syntax. 
CLI: EyeB:glintsWanted <n> ;  
CLI: EyeB:CalibData fm index xDat yDat xStim yStim omitFlag 
NOTE: stateEngine CLI are only in Ch.9, not in the CLI tables at the back! 
17.1.1 Delimiters mentions use of commas in CLI strings, where are commas used? 
Matlab.h need documentation 
Change all: NormalValue  NormalizedValue 

Suggest secton on Region tab > GazeSpace_MouseAction radio buttons 

Glossary: occluders 

mailto:EyeTracker@ArringtonResearch.com


 
Arrington Research 

3/2/2016 
Page 320 

32.3 Coding issues 

 Macintosh dylib does not provide callback function as of 293.132, fix soon! 
 Need prefix EyeA: EyeB: Both: for calibration_Snap, _RedoPoint, calibrationUndo, etc. 
 Need to remove the ‘_’ from CLI before parsing 
 Need separate: calibration_StereoDisplay {Off, SideBySide, …? }, and stimulus_FakeStereo 

 Need GUI for : eyeA:pupilAutoCenter <boolValue> : (a) checkable item in video menu, (b) 
checkbox in Controls window > EyeA & EyeB tab panels. 

 GUI for gridSpacing and radiobuttons for: Equal, Tangential ? 
 Video_yokedGlint is broken? 
 Save ParallaxDataPoints 
 18.4.4 StereoDisplay: needs LeftRight, RightLeft, OverUnder, etc. 
 printWindow broken? Offer window_snapShot that saves image to file / clipboard.’ 
 Need to add EyePrefix option for : calibration_Snap ; calibrationRedoPoint; calibration_RealRect 

; calibration_Undo ; calibration_SlipCorrection ; etc. 
 Need global License folder, eg: C:/ViewPointLicense/ and/or a LICENSE: path definition 

that is loaded before the license is checked. 
 TTL_cmd  send commands from ViewPoint~Voltage 
 Define new CLI interface (or merge with ttl_simulate) 

o signal_cmd 200 { dataFile_NewUnique } 

o VPX_SendCommand(“sendSignal 200 ”); verify this command string?  signal_send 
o ? First N signal_cmd are same as FKey_cmd to avoid confusion, extends fkeys! 
o To avoid infinite loops, signal_cmd must not contain signal_send. 
o TTL devices could optionally issue signal_send N for various TTL IN values. 

 Layered apps (eg. ViewPoint~Voltage) could also respond to signals, replacing ttl_out and 
allowing multiple ViewPoint~Voltage targets. 

 C:/Windows/ViewPoint/ViewPointPrefs file (no extension) 

 DLL http://viralpatel.net/blogs/register-dll-files/ 
 C:\WINDOWS\system32\ 
 Why does VPX_GetHeadPositionAngle need VPX_SDK_VERSION and size? 
 VPX_GetViewPointHomeFolder  VPX_GetString( VPX_STRING_HomeFolder, *size, *chr) 
 VPX_GetROI_RealRect in 3DWS? 
 Suggest: penPlot +cursorPosition 
 Try self populating, checkable, scrollable, dialog for PenPlots. 
 Put AR logo in Parent window where the Status window is and remove that window. 
 For monocular, try move GazeSpace to Status area, and move PenPlots to top. 
 ToDo: move “Video Controls” EyeSpace monitor button stuff to Controls: Eye tabs. 

 File > Print > * are broken. Prints the date & time, but no picture. 
 Need [ Retrieve ] button for Geometry window (next to [Store] button) ? Settings>Geom> 
 Clarify: StateIntoROI (not documented) vs. StateEnterROI . stateDemo ?? 
 SDK: VPX_GetStatus vs. CLI Q querey commands (document? Need better CLI feedback) 
 dataFile_StartFileAtZero <bool>  { AtZero, AtSystemTime, AtInitDLL } 
 KnownIssue: once calibration_Snap N is specifed, subsequent calibration_Snap (without an 

argument) use the last specified N rather than the currenlty selected point. 
 calibration_SnapAt x y idea, consider calibration_CustomPoint 1 0.5 0.5; calibrationRedoPoint, cf 

OnContent 

http://viralpatel.net/blogs/register-dll-files/


 
Arrington Research 

3/2/2016 
Page 321 

 Need calibration image (eg animated GiF) {Shrink, Bounce, Image} ??? 
 Need: EyeB:calibration_RealRect with stereoDisplay ON 
 Reprogram calibration_SaveEyeImages to save the transcendental file to a permanent one. 
 calibration_DumpQuality – GUI of Quality might be good. 
 SilverBox : 4. Scene B or Observer – currently Observer is only separate special usb camera 
 Save Observer movie 
 {move,size,*}Window AdvancedCalibration; CalibrationImage 
 Need: dumpWindowNames 
 Change serialSend  ethernetSend or linkSend, also for serialReceive 
 updateData and fpsUpdate description seems to be for 60Hz systems, what about USB220? 
 debugSDK description: what about remote DLL, is this only for DLL connected to VP? Does 

the DLL intercept this command string? What about VPX_DebugSDK ? 
 NEED VPX_SendCommandW(‘my unicode string’); 

 Need ?? : eyeMovie_NewDialog , eyeMovie_LoadDialog 

 Need to quantify the eyeMovie_Speed  values better, currently { 0.0  … 99.0 } 

 eyeMovie_overlays  arguments ???? 

 eyeMovie_Zoom 1.0 and greater causes problems with the display and probably the analysis. 

systemOpen  WARNING: Currently when using a default folder, such as Data\ 
you must following it with a backward-slash before specifying a file name. 

 

 setPath MOVIES: is being considered for deprecation and not included in documentation; as 
movies would be under Images/ folder or a more general Stimulus/ folder in the future. 

  

torsion_SampleArc IntValue : allows 0 and negative numbers, maybe should have lower limit of 10? 
Gaze Cursor (^C) – control-C does not seem to work! 
gazeCursor_used : BUG: dot persists when turned OFF, 
gazeCursor_transparency : what is the default value? 
Need: CLI: EyeA:pupilScaleSnap 
Deprecate dataFile_Resume in favor of dataFile_Pause Off 

Stimulus_PlaySound without launching media app? 
 

int result = VPX_SendCommand(char* cmd ); // Change from TCHAR, section 20.5 

char* VPX_GetViewPointHomeFolder (char* pathString );  

// Change from PTCHAR, section 21.6.3 

 

VPX_SUCCESS,  

VPX_FAILED_InvalidVideoChannel // Invalid Eyn  

VPX_FAILED_BadPointer,  

 

VPX_Obsolete.h 

VPX_GetOvalRect 

+serialSend     // also for ethernet 
+serialReceive   // also for ethernet 


